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About This Textbook...

We have pleasure in presenting this textbook of physics of Standard 12 to you. This book is
on the syllabi based on the courses of National Curriculum Framework (NCF), Core-Curriculum and
National Council of Educational Research and Training (NCERT) and has been sanctioned by the
State Government keeping in view the National Education Policy.

The State Government has implemented the semester system in science stream. The semester
system will reduce the educational load of the students and increase the interest towards study.

In this Textbook of Physics for Standard-12, Seven chapters are included, looking into the
depth of the topics, time which will be available for classroom teaching, etc...

The real understanding of the theories of physics is obtained only through solving related
problems. Hence, for the new concept, solved problems are given. One of the positive sides of the
book is that at the end of each chapter extended summary is given. On the basis of this one can
see the whole contents of the chapter at a glance.

Keeping in view the formats of various entrance test conducted on all India basis, we have
included MCQs, Short questions, objective questions and problems in this book. At the end of the
book, Hints for solving the problems are also included so that students themselves can solve the
problems.

This book is published in quite a new look in four-colour printing so that the figures included
in the book are much clear. It has been observed, generally, that students do not preserve old text-
books, once they go to the higher standard. In the semester system, each semester has its own
importance and the look of the book is also very nice so the students would like to preserve this
book and it will become a reference book in future.

The previous textbook got excellent support from students, teachers and experts. So a
substantial portion from that book is taken in this book either in its original form or with some
changes. We are thankful to that team of authors. We are also thankful to the teachers who
remained present in the Review workshop and gave their inputs to make this textbook error-free.

Proper care has been taken by authors, subject advisors and reviewers while preparing this
book to see that it becomes error-free and concepts are properly developed. We welcome
suggestions and comments for the importance of the textbook in future.
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1.1 Introduction

ELECcTRIC CHARGE AND ELECTRIC FIELD

Whatever facilities an individual is enjoying in this modern age is due to technological
development. From all kinds of energy, electric energy holds an important role for human
comfort. Electric energy can be easily stored and can be transferred to another form of energy.
There is no exaggeration in calling the electricity is the mother of technology. Electric charges
are the foundation stones of electricity.

In this chapter we will study about static charges, their properties and interaction between
them. Such a study is called static electricity. Static electricity is used in copier machine, laser
printer, television etc. Natural phenomenon such as lightning can be understood through static
electricity. Here, we will study about electric fields due to different system of charges and its
characteristics.

1.2 Electric Charge

Any matter consists of certain fundamental particles. Fundamental particles are more
than 100. Out of them three particles are most important namely electron, proton and
neutron. Because of their masses these particles exert gravitational force on each other. For
example two electrons lcm apart exert 5.5 X 1077 N gravitational force on each other, which
is attractive. However, an electron is found to repel another electron at the same distance
(1 cm) with a force of 2.3 X 107> N. This additional force other than gravitational force is
an electric force. The fundamental intrinsic property due to which such a force acts is
called the electric charge.

Just as masses of two particles are responsible for the gravitational force, charges are
responsible for the electric force.

Two protons placed at a distance of 1 cm also repel each other with a force of 2.3 X 107* N,
which shows that proton has the electric charge. The magnitude of this charge is same as the
charge of an electron. Now if a proton and electron are placed 1 cm apart, they exert a force

of 2.3 X 107** N on each other but this force is attractive.

Thus, we conclude that magnitude of charge on electron and proton is same but they are
of opposite type.

Electric charges are of two types : Positive charge and Negative charge. Traditionally,
charge of a proton considered positive and that of an electron negative. Though it makes no
difference whatsoever to Physics if this sign convention is reversed.

Electric Charge and Electric Field - 1



The force acting between two like charges is repulsive and it is attractive between two
unlike charges.

All material bodies contain equal number of electrons and equal number of protons in their
normal state. So they are electrically neutral. In any substance, electrons are comparatively weakly
bound than the force with which the protons are bound inside the nucleus. Hence, whenever there
is an exchange of charge between two bodies due to some process (e.g. friction), it is the electrons
are transferred from one body to the other. The body that receives the extra electrons, becomes
negatively charged. The body that loses the electrons, becomes positively charged because it has
more number of protons than electrons. Thus, when a glass rod is rubbed with a silk cloth, some
electrons are transferred from the glass rod to the silk cloth. The glass rod becomes positively
charged and the cloth becomes negatively charged because it receives extra electrons. To detect
these charges a simple device is used, known as electroscope.

Electic charge is a fundamental property like mass. It is difficult to define. The SI unit of
the quantity of charge is coulomb and abbreviated as C.

One coulomb is the charge flowing through any section of the conductor in one second when
the electric current in it is 1 ampere. The charge on a proton is e = +1.6 X 107" C. The charge
on the electron is e = —1.6 X 107 C.

Quantization of Electric Charge

All the experiments carried out so far show that the magnitude of all charges found in
nature are in integral multiple of a fundamental charge.

Q = ne

This fact is known as quantization of charges. The fundamental charge is the charge of an
electron or proton. It is denoted by e and it is called the fundamental unit of charge.

Out of all the fundamental particles, the building blocks of all matters, the particles having
possesed charge equal to e. For example, charge on proton and positron (positive electron) is
+e, while charge on electron is —e. Thus, charge on any object can be increased or decreased
only in step of e. The quantization of charge was first suggested by English scientist Faraday.
It was experimentally demonstrated by Millikan in 1912.

No theory, so far, has been able to explain satisfactorily, the quantization of charges.

According to new research, the proton and neutron consists of another fundamental particles
called quarks.

A proton and neutron consist of three quarks each. These quarks are of two types : the

quark possessing +%e charge is called an up quark (#) and another having —%e charge is

called a down quark (d). (The composition of proton is indicated as uud and composition of
neutron is indicated as udd). Thus, matter is formed of such quarks and electrons. The
independent existence of quark is not detected so far.
Conservation of Electric Charge

The algebraic sum of electric charges in an electrically isolated system always
remains constant irrespective of any process taking place. This statement represents the
law of conservation of charge.

In an electrically isolated system, a charge can neither enter from outside nor escape from
inside. Any chargeless thing can enter or leave such a system.

In the experiment of glass rod and silk cloth, before rubbing glass rod with silk the net
charge on them is zero. After rubbing the glass rod with silk cloth, the glass rod becomes

2 - Physics-IIT



positively charged and same amount of negative charge is received by the silk cloth. Thus, after
the process of friction the net charge of system (glass rod + silk cloth) is zero.
Now, to understand the conservation of electric charge we consider another illustration.
As shown in figure 1.1, the initial charge in a box
having thin walls is zero. A highly energetic photon enters
in the box. A photon is a chargeless particle. As the

szgusssshansssas

photon enters through a box it produces an electron- xE
positron pair. After the pair production in the isolated “;m-' """ s
system the net charge is zero because the charges on the jr Y R
electron and positron are equal and opposite type. The o “g=0 T olated
initial charge of the system was zero. Thus, in this event ] . System
also charge is conserved. e” = Positron

In other words in an electrically isolated system, only e~ = Electron
those processes are possible in which charges of equal Figure 1.1 Conservation of
magnitude and opposite types are either produced or Electric Charge
destroyed.

Charging by Induction

Consider two identical isolated sphere placed on an insulated stand, one carrying net charge +Q
(i.e. positively charged) and other having no net charge. If they are brought directly in contact or
brought in contact with conducting wire, some of the electrons from the chargeless sphere
transferred to positively charged sphere. As a result, the positive charge on the positively charged
sphere reduced and chargeless sphere becomes positive, because it loses the electrons. Now, both

Q

the spheres will have equal amount of charge+7 after the separation because they are identical.
Thus we have established % electric charge on the other sphere through contact or that the

charging of the second sphere has taken place.

There is another method of charging the object. In that method the charged body does not
looses its own charge and without coming in physical contact with other object it will induce
opposite charge in that. This phenomenon is called induction of electric charge.

Figure 1.2(a) shows an isolated metal sphere. The net charge on the sphere is zero. As shown
in figure 1.2(b), a negatively charged plastic rod is brought close to the sphere the free electrons
of the sphere move away from the rod because of repulsion and go to the other part of the sphere.
Consequently the part of the sphere close to the rod becomes positively charged due to deficiency
of electron in that region.

7 2 O
isolated meta’ ﬁ ﬁ |

negatively
charged plastic
rod

(a) (b) ()

isolated
j sphere
(a) (b)

Figure 1.2 Induction of Electric Charge
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As shown in figure 1.2(c) when the sphere is connected to the earth through a conducting
wire, the some of the electrons of the sphere will flow to the ground. (The earth is a good
conductor and it act as a practically infinite source of extra electrons or sink of electrons.)

As shown in figure 1.2(d), even if the connection with the earth is removed, the sphere
retains the positive charge. When the plastic rod is moved away from the sphere, the electrons
get redistributed on the sphere such that the same positive charge is spread all over the surface
of the sphere. (Figure 1.2 (e))

1.3 Coulomb’s Law

French scientist Charles Coulomb (1736-1806) measured electrical attraction and repulsion
between two electric charges through a number of experiments and deduced the law that
governs them, which is known as Coulomb’s law. The law is as under :

‘The electric force (Coulombian force) between two stationary point charges is
directly proportional to the product of their charges and inversely proportional to the
square of the distance between them.’” This force is along the line joining the two charges.

According to Coulomb’s law, the electric force between the two point charges ¢, and g,
separated by a distance r can be given as,

94
F o< 2
,
44,
2

r

 F =k (1.3.1)

Where k is a Coulomb’s constant. It’s value depends on the unit of ¢, ¢, and r.
Experimentally the value of k in vacuum in SI unit is 8.9875 X 10° Nm?>C~2. For practical
purposes, kK = 9 X 10° Nm?C™2. (In CGS unit value of k is 1).

For the simplification of formula in electrostatic k is expressed as dme, -

1
47'[80

k =

Where, € is the permittivity of free space. From the above equation,

1 1 —-12 OnT—1...—2
g = —=——1 = 8854 x 102 C®N"'m
0 4nk 47x8.9875%10°
1 44,
Thus, F = prr (1.3.2)

If the charges are in any other insulating medium and not in vacuum, the permittivity of
vacuum €, in equation (1.3.2) should be replaced by the permittivity € of that medium. Hence
force in that medium,

1 919
= T l—f (1.3.3)

Thus, Coulombian force acting on two point charges is also depend on the medium between
the two charges. By taking ratio of equation (1.3.2) and (1.3.3),

(1.3.4)
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Where, € is known as relative permittivity of the medium or dielectric constant (K). A
detailed study about this we will learn in Chapter 2. From equation (1.3.4) it is clear that the

force between given charges held at a given distance apart in insulating medium is only %
times (i.e.k-th part) of the force between them in vacuum.

Remember that Coulomb’s law holds only for stationary point charges. Generally, this law is also
applicable for charged objects whose sizes are much smaller than the distance between them.

Coulomb’s law resembles inverse square law of gravitation. The charge q plays the same
role in Coulomb’s law that the mass m plays in gravitational law. The gravitational forces are
always attractive, whereas electrostatic forces can be repulsive or attractive, because electric
charges are of two types.

Illustration 1 : The repulsive force between two particles of same mass and charge, separated
by a certain distance is equal to the weight of one of them. Find the distance between them.
Mass of particle = 1.6 X 10’27kg
Charge of particle = 1.6 x 107°C, k = 9 x 10° MKS, g = 10ms .
Solution : Here,
Repulsive force between Weight of one of
two particles - the particles

919
. k=5 = mg
r

. kgg, | 9x10°x(1.6x107"7)? 4t w102
T Tmg T aex10hao) X

r = 0.12 m.

Illustration 2 : Two spheres of copper, having mass 1g each, are kept 1 m apart. The
number of electrons in them are 1% less than the number of protons. Find the electrical force
between them. Atomic weight of copper is 63.54 g/mol, atomic number is 29, Avogadro’s
number N, = 6.023 X 10% mol™". k = 9 x 10° SL

Solution : In a neutral atom of copper the number of electrons and protons are 29 each.
Here, the number of electrons are less than that of protons by 1%.

Total Charge Total Charge
Net charge on each atom ¢' = [ & j+[ & j

of Protons of Electrons

= (+29¢) + (—29¢) — (—0.29¢)
=+ 0.29
. Net positive charge of 1 g copper,

63.54

No. of Atoms
1= in 1g Copper

23
] x 0.29¢ = 8023x107 79,
Electric force between two copper spheres,

2
r r

ES)

2
9x10° « 6.023x10% x0.29%x1.6x10""°
2 63.54

= 1.74 x 10°N

It can be seen in above example that even a difference of 1% between positive and
negative charges in any substance can give rise to a very large force. Most of the matters are
electrically neutral so that there is a dominance of weak gravitational force on them.

Electric Charge and Electric Field - 5



Illustration 3 : Charge Q is uniformly distributed over a body. How should the body be
divided into two parts, so that force acting between the two parts of body is maximum for a
given separation between them ?

Solution : Suppose the body is broken into two parts such that the charge on one part of
body is g and on the other is Q — ¢g. The force existing between the two parts separated by
distance r will be,

F = k‘](QZ—CI)
r
The force F to be maximum, the quantity y = ¢(Q — q¢) = Qq — ¢*
. . dy dy
should be maximum. For this aq should be zero. .. - =Q — 2 =0
0= 2

Thus, the body should be divided into two parts such equal charges are present on each part.

Coulomb’s Law in Vector from :

Force is a vector quantity, so the Coulomb’s law can be represented in vector form as
follows :

L3

z1 z
E, .
BN
t"‘-a.“ ny q, -E: .
S JaNE J B
-
; q;\ = h q2
7. —
0 ’ - "2
i 4 >y
K ‘
(a) X (b)

Figure 1.3 Coulomb’s Law in Vector Form

As shwon in figure 1.3(a), let f and ;; be the position vectors of the charges ¢, and ¢,

respectively in a Cartesian co-ordinate system. Let r. be the unit vector pointing from

12

¢ S
9, © 4> n, = 1 -

According to Coulomb’s Law, force acting on charge ¢, due to charge g, is,

- W
E, = k=5 7, (1.3.5)
12 r
12
— . . ~ . .
Where, r,, = |E) — r,| is the distance between the two charges and 7/, is a unit vector
f » in the direction f
of r, in the direction from ¢, to gq,.
- -
. hTh
T S5
ln—r,l
- -
E. =k 9% (—n)
12 - >, - -
ln—r,l lr—r,l
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- q,49,
F, = k—l2—
lr—r,l

(5 = 1) (1.3.6)
Above equation is valid for any sign of the charges whether positive or negative. If g, and

q, are of the same sign (either both positive or both negative)

131)2 is along #,, which denotes repulsive force. If g, and g, are of opposite sign, 1?2) . is

along —1#,, which denotes the attraction between the opposite charges. (See Figure 1.3(b)).

The coulombian force on charge g, due to charge g, can be given by replacing 1 and 2
in equation (1.3.6)

- _ 99 -
E =k et (1.3.7)
449
- k—_)1_>23(r_2> - %) (1.3.8)
|r2—r1|

Where, r,, 1s a unit vector directed from g, to g,.

- - - -
Here, r, — n == (5 — 1)

Thus, from equation (1.3.8),

= A | o e R N
le_ k—> —>3(r1 rZ)_ Fl2

lr—rl
Thus, Coulomb’s Law agrees with the Newton’s Third Law.

1.4 Forces between more than two charges : The Superposition Principle

We can use Coulomb’s Law to find the force acting between two electric charges. When more
than two charges (Suppose they are ¢q,, ¢,, ..., ¢,) are present and to calculate the net force acting
on any one charge, we have to use superposition principle in addition to Coulomb’s Law.

Superposition Principle : When more than one coulombian forces are acting on a
charge, the resultant coulombian force acting on it is equal to the vector sum of the
individual force.

Thus, the coulombian force acting between two charges
is not influenced by the presence of a third charge. Hence,
the coulombian force is called a two body force.

Consider a system of charges ¢,, q,, g, and ¢, as

3 r, are their
respective position vectors in a given co—ordinate system.

shown in figure 1.4. Let 7 , r_; 7 and

1

Here, we will find the resultant force T:; acting on charge

q, due to the other charges. X
The force on charge g, due to charge g, is, Figure 1.4  Superposition Principle
> 4% P
E, = R
21

The force on charge g, due to g, is,
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= 4, q3 S

=k

F23 23
r; 23

b

The force on charge g, due to g, is

q> 49,
=k .2 T
24

According to superposition principle,

N
F24

- o - 2 419 q2q3 N q2q4 2
F,=F + E; + By =k—75 4 +k—5 ’23+kr Iy
H1 "23 24
q . 9z dq .
= kq,| T2t 3t 5
1 3 24
4 q,
= kg, Y, 5 h; (1.4.1)
j=1 1
Jj#2
or
N 4 q; L -
B =k, 25—~ () (1.4.2)
—1Ir—r |
j#2 2

In general, the force acting on charge g; due to system of n electric charges will be,

n
d J A
E = 2—2 T
J:
J#i
- “ -
Eo=kg,2 55— (=) (1.4.3)
Ehlir—r
J#i L J

Illustration 4 : Three equal charges each having a magnitude of 2.0 X 1075C are placed at

the three corners of a right angled triangle of sides 3cm, 4cm and Scm. Find the force on the charge
at the right angle corner.

Solution :

Y The situation is as shown in the figure.
q1:q2:q3:q:2>(10_6c
73 The position vectors of ¢,, ¢, and g, are
E) Sem ) N R
Feiti respectively 5, r; and n-
L. 4 9 5= (0, 0)
F,*® 4 cm r_z’
5
¥ B r, = (4, O)cm = (0.04, O)m
N

n = (0, 3)em = (0, 0.03)m.

q, is placed at the right angle of right angled triangle. Net force acting on g, is,

s Physis 1



A

7; 7

P 2} (v 4, =q,=q (1)

12 '3

X« 94
=kr2 P +k123”13=k‘]{

Now, r, = r — 1, = (0, 0) — (0.04, 0) = (=0.04, O)m.

r, = \E0.047+0)° = 0.04m.
- -
. o ~0.04,0
hy = 52 = S0 = (-1, om.
Ir, ! ’

?3 - ?—73 = (0, 0) — (0, 0.03) = (0, —0.03)m

i3 = §0)?+(=0.03)> = 0.03m

. _ h-n _ (0,-003) _
= 5 T oo (O 7bm

|r13|

Put all these values in equation (1),

L0) , ©-1) }

9 —0,2
9 x 10% (2 x 1079 [(0'04)2 003

N
K

=36 x 107°[625 (-1, 0) + 1111.1 (0, —1)]
= (=22.5, —40)N

2Bl = 22574407 = 45.88N

Direction of force,

F _
0 = tanl[F—y] = tan’l(%) = tan”'(1.777)

X

= 60.6°
0 is the angle with respect to negative X-axis.

Illustration 5 : Two electric charges having magnitude 8.0LC and —2.0LC are separated by
20cm. Where should a third charge be placed so that the resultant force acting on it is zero ?

4 20cm ——% B +—(x+20)cm—us
Aw

q,= 8ucC q,= —2uC q,

aC

Solution : Let the two charges ¢, = 8UC and g, = —2UC be placed at points A and B

respectively as shown in figure. The resultant force on the third charge g, will be zero only
if the forces due to two charges are equal in magnitude and opposite in direction. This is
possible only if the third charge is placed at a point on the line joining the two charges. Third

Electric Charge and Electric Field - 9



charge g, cannot be placed anywhere between points A and B since g, and g, have opposite

sign. As the magnitude of charge on A is greater than that on B the third charge has to be
nearer to B.

Suppose the third charge is placed at point C and BC = x cm.
According to superposition principle, the net force on charge g,
Fy = F, + Fy

0= kDB L Bs a4 BXIOT a0t
(r+x) X2 (r—}—x)2 x? (20+x) %2
A = s x = 20cm

Illustration 6 : Two spheres having same radius and mass are suspended by two strings of
equal length from the same point, in such a way that their surfaces touch each other. On depositing

4 x 107'C charge on them, they repel each other in such a way that in equilibrium the angle
between their strings becomes 60°. If the distance from the point of suspension to the center of the
sphere is 20cm, find the mass of each sphere. k = 9 x 10° SI and g = 10ms 2.

Solution : If the spheres are identical in all respects then 4 X 107’c charge will be

distributed equally between them. Hence charge on each sphere is 2 X 107'C. The force acting
on sphere 1 in equilibrium will be :
(1) Weight mg in the vertically downward direction.

LU
i Ay (2) F,, the repulsive force between the spheres,
7 1ok (3) The tension T produced in the string.
I i Under the balanced condition, if we consider the
! . 6 X and Y components in the Cartesian co-ordinate
= 'ﬁ(/_]uTcosG system as shown in the figure
i . ’
4 I F, = Tsin®
; i *
) = T — t AN .(_{ X 2
Tomd TN F, o kL = Tsin® (1)
€ X » X
v and mg = TcosO 2)
mg
2 2
];q = tan® = m = 4
x“mg x“gtan®
X
From figure, sin® = =7
. x = 2l sin®
qu
om =

g 41% 5in®0 tand

(9%x10”)(2x1077)? 156 % 102k
S 0% 420x10 ) x (5in30°) x(tan30?) 0 % g
1.5 Electric Field

When we place a point charge g, in the region around another point charge ¢ in the space,

it will exert the electric force on g,. We may ask the question. If charge g, is removed then

o [ —



what is left in the surrounding ? Is there nothing ? If there is nothing in the surrounding, then
how does a force act on g, ? In order to answer these questions, the concept of electric field

is very useful.

A charge produces some effect in the space around it. The region around the charge in
which the effect of electric charge is prevailing is called the electric field of the charge. This
electric field can interact with another charge ¢, placed in it and exerts the force on it. (It
does not exert the force which produce the electric field). Thus, electric field acts as an agency

between g and g,
Suppose a charge Q is placed at an origin of a co-ordinate system. Now bring a charge
g, at the given point in the electric field without disturbing the position of charge Q. If the
position vector of that point is v , then electric field at that point can be defined as follows :
E(r (1.5.1)
Here, E is called the electric field or electric field intensity of charge Q at a position

vector r . The quantity E is independent of g,. It is dependent solely on the magnitude of

electric charges of the system, their arrangement and the position vector 7 of 7pe

The charge g, used to define or to measure intensity of electric field is called a test
charge. The charges producing electric field are called the source charges.

In SI system, the unit of electric field is NC! or Vi

In equation (1.5.1), if g, = 1C then E = ? and definition of electric field can be given
as follows :

‘The force acting on a unit positive charge at a given point in an electric field of
a point charge of a system at charges is called the electric field or intensity of electric
field % at that point.

Electric field is a vector quantity and it is in the direction of force acting on unit positive
charge at a given point.

If the system of charges consists of more than one charge, then electric field at a given
point can be obtained by using Coulomb’s Law and superposition principle.

Consider a system of charges g, g,, ..., g, with position vectors E), r_z) s e Z relative to
origin. The electric field is produced in the region surrounding the system due to the system of
charges. We want to determine the electric field at a point P(x, y, z) having position vector r . For

this purpose place a very small test charge g, at that point and use the superposition principle.

Electric field at point P due to charge g, is given by, 71 B ﬁz

l;) \VEI
- q -
E, = L=k oG- ;

o lr—n P

Electric field at point P due to charge g, is.

N
— E q, - 5
— - - s _ 3
E2 - q - k RN ( r r2) * Yy
0 lr—r,l
Same way, electric field at point P due to X

Figure 1.5 Superposition Principle
for Electric Field
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F

- -

E, =2 =kq—"(r—7)
9

- 3 n
| r—r |

According to superposition principle, net electric field at a point P is.

-
r
n

g - — -
E=E +E, +. +E,
9 - > p) - - q -
= NN (r—r1)+k_>_)3(r—r2)+ ...... +k_)i3(r—},;1)
lr—nl r=rn lr—r |
n
= S 49; - -
E=kX5 5 (r-7) (1.5.2)
i=1 3 J
=Llr—r. |
i
Here, ¢q,, q,, ..., g, are the sources of electric field.

The following points are noteworthy for an electric field

(1) To determine the electric field there should not be any change in the original system of
charges due to the presence of a test charge. So it is necessary that the test charge should be very
small. To define electric field more precisely g, — 0. But minimum value of g, is 1.6 X 107C.

(2) Equation 1.5.2 indicates the force acting on unit positive charge at point

;) (x, y, 2). Once E(?) is known, we do not have to worry about the source of electric field.
In this sense, the electric field itself is a special representation of the system of charges
producing electric field, as far as the effect on other charge is concerned. Once such a
representation is done, the force acting on charge ¢ kept at that point in the field can be
determined using following equation.

- - - -
F(r)=4qE(r) (1.5.3)
(3) The direction of force acting on unit positive charge at a given point is the direction
of electric field at that point.
(4) Faraday was the first person to introduce the concept of electric field. Electric field is
not an imaginary concept but a physical reality.
1.6 Electric Field Due to a Point Charge

- As shown in figure 1.6, consider a point charge Q on
¥ the origin of a cartesian co-ordinate system.
—
E . .
In order to calculate electric field due to charge Q,
consider a test charge ¢, at a distance r from the charge
L]
q, Q. Force acting on charge q due to Q is,
5
’
- Qq,
F = k57
r
Q(-. > X Therefore, electric field intensity at r due to Q will

be,
Figure 1.6 Electric Field Due to a

Point Charge

7 (1.6.1)
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Figure 1.7 shows the electric field due to point charge in two dimensions using field vectors.
From figure 1.7 it is clear that for positive charge (Q > 0), direction of field vectors are
radially outward while those of a negative charge (Q < 0) are radially inward. The length of
the arrow decreases, indicating the decreasing strength of the electric field, as we go away

from the charge. 4
" T A N
S gl gl
e — P — — - e o
20 R
“u A =
A T Y

e
u

v l
!

Figure 1.7 Electric Field of a Point Charge
A charge +107°C is located at the origin of cartesian co-ordinate system

Illustration 7 :
and another charge Q at (2, 0, O)m. If X-component of electric field at (3, 1, 1)m is zero,

calculate the value of Q.
As shown in the figure, Position vector of

Solution :
qg = 107°C s (0, 0, 0) and position vector of Q is
(2, 0, O)m. Y
The co-ordinates of point P is (3, 1, 1) m. N F(3’ L1
"
1
'? =(3’ 1’ 1)_(0’ O’ 0)=(39 15 1) 0 ;-_2>
=
=3; + [+ ¢ f"'fq(o, 0,00 Q20,0
171 = J3*+@*+@? = V11 m.
n =G 1,1)-@2,0,0=(,11)m

=7+ +i

5= Jo*+@?+@? = +3 m.

Electric field at point P, E = El + 1?32
-9 4% ~on 2 S
q Q 10 (3l+_]+k)+Q(l+]+k)
= -y =+ — =
k 3 n kr23 T, k ( ,—11)3 (_\/5)3

gt

Now, x component of electric field is zero.

107 3,.Q
o E =k 3 31 =0
anz 3?2

. Q = — (%)% X 3 x 107° = —0.43 x 107 C.
F
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Illustration 8 : Four particles, each having a charge ¢, are placed on the four vertices of
a regular pentagon. The distance of each corner from the centre is a. Find the electric field

at the centre of the pentagon.
Solution : Let the charges be placed at the vertices A, B, C and D of the pentagon as

shown in figure. If we put a charge g at the corner E also, the field at O will be zero by
symm\etry.

;
y \ Therefore, g + g. + E. + E + F =0
erefore, E, E, E. E, E, =
— - - - —
E, T Ey * E. T E, = TEg

4

Thus, the field at the centre due to charges at A, B, C and
D is equal and opposite to the field due to the charges g at E

-4 alone.

The field at the centre due to the charge g at E is.

N
Eg

Thus, the field at O due to the charges on A, B, C and D is

= ka% (along EO).

= q . .
E = k? (along OE direction).

Illustration 9 : Four electric charges +¢q, +¢g, —g and —¢g are respectively placed on the
vertices A, B, C and D of a square. The length of the square is a, calculate the intensity of
the resultant electric field at the centre.

Solution : All the electric charges are equidistant from the centre O of the square, hence
the magnitude of intensity of electric field due to all the charges will be the same at point O.
If r is the distance of vertices from the centre, we have,

kq

4 tH 4 E,= E;= E= E= 2

The directions of these electric field are as shown in
figure.

If E' is the resultant field of E, and E. then

a ) & .

X T XN ' q
& E - =E, +E. =2-= 1
% N\e A C 2 (D

E

In a similar way E"' is the resultant field of E; and E,.

D —q —g C "o_ _ ~kq
q E'" = E, + E, =25 (2)

r

. . - - -
Resultant electric field, E = E' + E"

. E = /(E')2+(E")2 (" Angle between E' and E" is 90°)
kg ¥ (kg
= \/(2—2) +( —ZJ (from equation (1) and (2))
r r
8k’q> 242kq
=\ =T ©
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From the figure, (2r)* = a®> + a?

a

so2r = 2a2 S r = \/5
Putting the value of r in equation (3),

2\2kq
2
a_
%)
The direction of E is parallel to AD (or BC).
Ilustration 10 : An electron falls through a distance of 1.5 cm in a space, devoid of
gravity, having uniform electric field of intensity 2.0 X 10* N c. (Figure (a)). The direction
of electric field intensity is then reversed keeping its magnitude same, in which a proton falls

through the same distance. (Figure (b)). Calculate the time taken by both of them. m, = 9.1 x 107!

E =

kq

kg, m, = 1.7 X 10% kg and ¢ = 1.6 x 107" C.
Solution : As shown in the Figure (a), the direction of the electric field is vertically upward
because of which the electron experiences a force eE in the vertically downward direction.

The acceleration of electron,

®@ @ & @ ®@ ® ®@ @

Fy Fy ', 3
e E 4
— l =) — l =
F =¢ E F=¢E
L,
E
W L 3 v -~
®@ @ @ @ @ @ ©
Figure (a) Figure (b)

From the equation of motion d = vt + %at2 (considering v, = 0) the time taken by

electron to travel distance A.

;= 2h ,the
e a, - ¢E

Substituting the given data, we have 7, = 2.9 X 107% = 2.9 ns.

As shown in the figure (b) electric field is now in the vertically downward direction, the
proton experiences the electric force eE in the vertically downward direction.

. E
Therefore, acceleration of proton a = £
p m,

. . . 2hm

Therefore, the time taken by the proton to travel distance h is l, = eE”

Substituting the given data t, = 1.3 x 107s = 0.13us (microsecond).
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Hence, we can see that the time taken by a heavier particle is more than the time taken
by a lighter particle having the same magnitude of charge in a uniform electric field.

(On the contrary, as we have studied in Standard 11, the time taken for free fall in
gravitational field is independent of the mass.)
1.7 Electric Dipole

A system of two equal and opposite charges, separated by a finite distance is called
an electric dipole.

As shown in figure 1.8, the two electric charges of electric dipoles are +¢g and —¢q and

distance between them is 2a. Electric dipole moment (Z) of the system can be defined as
follows :

P =qa) (1.7.1)

The SI unit of electric dipole is coulomb-meter (Cm).

—q ; +q Electric dipole is a vector quantity and its direction is from
)] — ©) the negative charge (—¢q) to positive charge (+q).
|, 2 __I The net electric charge on an electric dipole is zero but

its electric field is not zero, since the position of the two

charges is different.
Figure 1.8 Electric Dipole

If im g — o and 2a — 0 in F = Z;q, then the electric dipole is called a point dipole.
Electric field of a Dipole :

To find the electric field due to an electric dipole, placed the co-ordinate system such that
its Z-axis coincides with the dipole and origin of system coincides with the centre of dipole. The
separation between the charges of the dipole +g and —¢ is 2a.

Here, we will determine the electric field at the point on the axis as well as point on the
equator of a dipole.

Electric field at the point on the axis of a Dipole :

N “z As shown in figure 1.9, we want to determine the
E+p electric field at a point P on the axis of a dipole. Let
2 Pz =2 the point P be a distance z from the origin. Hence, the

_‘r . . .

+44 :‘5{ distance of point P will be z — a and z + a from

G‘H"“* charges +qg and —q respectively.
. "'“-.._‘_ (_}(y =y Electric field at point P due to charge +¢ is,
0 —% § DY ‘
/ sin =g
: E sin ! E =k 5 b (1.7.2)
. G - E, + (z—a)
_.»="" E_ E cos® E_cosd

“dar Where, p is the unit vector along the dipole axis

Figure 1.9 Electric Field at the from —qg to +q.
Point on the Axis of a Dipole

. :’a)z p (1.7.3)

Now, Electric field at point P due to charge —q is, E_ = —k

According to superposition principle, the net electric field at point P is,

- = = 1 1 A dza
= + = k - = k — 5
E() = E, + E_ Q[(Z_a)z (z+a)2}p T2 P
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2kpz

E(z)=m

p (o 2aq = p) (1.7.4)

If z >> a, then a* can be neglected in comparison with z2.

- 2kp
E () = 3 p (z >> a) (1.7.5)

The direction of this resultant electric field is from O to P.
Electric Field at a Point on the Equator of a Dipole

The perpendicular bisector to the line joining the two electric charges of the dipole is called
the equator of a dipole. Here, we want to determine the electric field at a point Q on the
equator. Point Q is at a distance y from the centre of a dipole. The magnitude of electric field
due to the two charges +g and —g will be same since they are at equal distance from
point Q.

Magnitude of Electric field due to +q is,
E, = kﬁ (1.7.6)
Magnitude of Electric field due to —q is,

E = k—1 (1.7.7)
B (y2+a2)

- -
The direction of E _ and E _ at point Q are shown in Figure 1.9.

- - .
The components of E_, and E _ normal to the dipole axis are E_ sinf® and

E_sin® respectively. These components cancelled each other, since they are of equal magnitude

with opposite directions.

The components of E + and E_ along the dipole axis are E ,cos® and E_cosO respectively.

They will be added up since they are in the same direction.

A

The net electric field at point Q is opposite to p we have,

E(y) = —(E, + E_)cosB p

k ki . (2aq)
:_[ 2q2+2q2J%p:_k—§p
O +a”) (y +a") (y2+a2)2 (y2+a2)2
— k R
E() = -——2—5p (1.7.8)
(y* +a*)?
— kp R
If y >> a then, E(y) = —? D (y >> a) (1.7.9)

From the equations (1.7.5) and (1.7.9) it is clear that electric field of dipole at large

distance falls of not as % but as %
r r
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Behaviour of an Electric Dipole in a Uniform Electric Field :

Y“ As shown in figure 1.10, an electric dipole of
-
e =g
/H et |p| = q|2a_>| is kept in a uniform electric field E .
+q E .. . L .
Na % The origin O of co-ordinate system coincides with
0" - . D - L.
P /;0’6 Y the centre of a dipole and electric field E is in
L_//O > positive X-axis. Suppose, at any instant, the angle
= =g -
—4E q between p and E is O.

= - - .

The forces gE and —g E are acting on +¢q and

—q charges respectively. These forces are equal and
Figure 1.10 Electric Dipole in Uniform

o in opposite direction. The resultant force being zero,
Electric Field

keeps the dipole in translational equilibrium.
But, the two forces have different lines of action, hence the dipole will experience a torque.

A torque acting on +g with respect to point O, due to force qg is,
- N -
1, = (a X gE) (1.7.10)
In a similar way, the torque acting on —g with respect to point O due to force —qE) is,

t, = (—d) X (~qE) = (d X qE) (1.7.11)

Here, a and —a are the position vectors of +¢g and —g respectively.
From the equation (1.7.10) and (1.7.11) the resultant torque acting on a dipole,

T=(d XqE)+ (d XqgE)=2d XqE =2aq %X E
T= 7 XE (1.7.12)
Magnitude of torque, |?| = pEsin0 (1.7.13)

The direction of torque is perpendicular to the paper, going inside of it.

The torque rotates the dipole in such a way that the angle O reduces (In this case dipole
rotates in clockwise direction), when the dipole align itself along the direction of the electric
field (6 = 0), the torque becomes zero. This is the normal position of dipole in electric field.
If the dipole is to be rotated by an angle O from this position, work is required to be done
against the torque. This work is equal to the change in the potential energy of the dipole.

Behaviour of electric dipole in non-uniform electric field :

If the electric field is non-uniform the intensity of electric field will be different at different
points as a result the electric force acting on the positive charge and negative charge of the
dipoles will also be different. In this situation both the net force and torque are acting on the
dipole. As a result dipole experiences a linear displacement in addition to rotation. This rotation
of dipole continues only till the dipole aligns in the direction of the electric field. But linear
motion of the dipole will continue.

Our common experience is that when a dry comb is rubbed against dry hair, it attracts the
small pieces of papers.

Here, the comb acquires negative charge through friction. But the paper is not charged,
then why does paper attract by comb ?

s [ Physics 1



The non-uniform electric field is produced by the charge

on the comb. Electric dipole is induced along the direction of

non-uniform electric field in the small pieces of papers. Comb

Non-uniform Electric

When charged comb is brought near to the small pieces of
Field
paper, this non-uniform electric field exerts a net force on

. . . . Piece of Paper
the small pieces of paper and paper move in the direction of P

Figure 1.11 Electric Field of
comb. Comb

Ilustration 11 : Calculate the magnitude of the torque on an electric dipole having dipole
moment of 4 X 10~ Cm placed in a uniform electric field of intensity of 5 x 10* NC™! making
an angle 30° with the field.

Solution : p = 4 X 10° Cm, E =5 x 10* NC', 6 = 30°, © = ?

T = pEsin® = (4 x 107) (5 x 10%sin30° = 10~ Nm.

1.8 Continuous Distribution of Charges

We can determine the net electric force acting on a point charge due to the discrete
charges in the space using Coulomb’s law and superposition principle. But, in practical situation
we need to work with the continuous charge distribution. For example, a continuous charge
distribution on a surface. In this situation, it is difficult to describe the effect of these charges
using superposition principle. Therefore, we use the concept of charge density to describe the
system of continuous charge distribution. It is not necessary that charge density will be uniform
in the system.

The continuous charge distribution of electric charge can be of three types :

(1) Linear charge distribution, (2) Surface charge distribution and (3) Volume charge
distribution.

. e . z1
(1) Linear Charge Distribution : Consider a Lo dr'
continuous charge distribution over a line as shown in Nt
+
figure 1.12. We want to determine the force acting on a g T .
charge ¢ situated at point P due to this charge distribution. rlq
=3
Let the amount of charge per unit length of line be A. 0 d > Y
It is called the linear charge density.
X
Total Charge on a Line . . _
A= Length of a Line = %, Unit of A is Cm™’ Figure 1.12 Linear Charge

Distribution

If the charge distribution is not uniform, then A will be different at different points on the
line. In that case linear charge density is represented as M7 ") at a point on a line having

. -
position vector r

Imagine the line to be divided into a large number of small segments of length dl’". Such

N
a line element dl ' having position vector r ' with respect to O is shown in figure 1.12.

Hence, the charge in line element dl'" will be,

dg = M7 ") |dl'| (1.8.1)
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The force acting on charge g having position vector ¥ will be,

d g -
A = QYD o o) (1.8.2)

- 93
| r—r'l

In order to calculate total force acting on charge g we have to add the forces like d F
due to all the line elements of entire linear charge distribution. If the line elements of the
charges are distributed continuously then the sum results into integration.

Total force,

k(q)(d

- - >
i Ir—r'P

- -
Mr|dl'
F = kg f%(?—? ') (from equation 1.8.2) (1.8.3)
L lr=r'l
If the charge ¢ situated at point P is very small (¢ — 0), then the intensity of electric field
at that point due to linear charge distribution will be,

I, Ml
E = — =k J‘—>——>3(r—r ) (1.8.4)
q I lr—r'l

Illustration 12 : A circle, as shown in the figure, having radius ‘a’ has line charge
distribution over its circumference having linear charge density A = KOCOSZG. Calculate the total
2n

electric charge residing on the circumference of the circle. [Hint : jcoszede: ]
0

Solution : The length of an infinitesimally small line element shown in the figure is ad®,
then the charge on the line element is

dg = had® = A cos*® ad®

In order to calculate the total charge Q residing on the surface, we have to integrate dgq
over the entire surface.

_ado £ Q= $dg

Here the symbol § indicates the integration over the entire

> closed path (circumference of the circle)
2n 2n 5
. Q= [ngcos’0ad0 = ak, [ cos™0d0=mak,
0 0

Illustration 13 : A conducting wire of length L carries a total charge g which is uniformly
distributed on it. Find the electric field at a point located on the axis of the wire at a distance
‘a’ from the nearer end. (Neglect the thickness of a wire).

Solution : Consider a small element dx of the rod located at a distance x from point P

where the electric field is to be determined.
dx I i | I
[+ %+ &+l & F % FF------=cc-c-= P > »
A 0 B p

| A
| X !
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The charge in this element will be, dg = %dx

Hence, magnitude of electric field at point P will be,

d
dE = k5 = ki &
X L
Now, electric field at P due to entire wire,

L
S P T
o L 2 L X,
a a
_ k_q[_ 1 +l} — % q | q
- L L+a a] = “allL+a) = 4ng, a(L+a)

Note : If L << a, then E = a% which is same as electric field due to a point charge.

41‘[80

If the charge g is positive, the direction of the field will be along the AP.

Illustration 14 : An arc of raidus r subtends an angle © at the centre with the X-axis
in a cartesian co-ordinate system. A charge is distributed over the arc such that the linear
charge density is A. Calculate the electric field at the origin.

Solution : The electric charge distributed on the portion of arc making an angle d¢ is

dq = Ardo. VA
The electric field at the origin due to this
charge rdo
khrd
dE = %
5 dg
The electric field vector dE is shown in the dEcosd
- >N
. . = . | ) r
figure. Taking two components of dE : Y iEsing
- kardo ~ dE
dg, = - 2 cos¢ { and
S kardg
dEy =-"7 sind j
= [ kA [ k)
& R
Now, E = JdEx = - Icos¢d¢l =-7 [smq)]ol
0 0
E, =—%2sin0i (1)
= kA [ k) 0
Now, E = -~ £S1n¢d¢J === [~coso], j
>k _ R
E, = -7 [cosO 1] (2)
E = Ex + Ey = —% sin®i + %(cose -1 (From equations (1) and (2))
=S VWA .
E = “=[(—sin®)i + (cos® — 1);]

r

Electric Charge and Electric Field - 21



Illustration 15 : A charge Q is uniformly distributed on the circumference of a circular
ring of radius a. Find the intensity of electric field at a point at a distance x from the centre

on the axis of the ring.
Solution : Given situation is depicted in the figure. Consider an infinitesimal element at point A

on the circumference of the ring. Let charge on this element be dg. The magnitude of the intensity

5
of electric field dE, at a point P situated at a distance x from the centre on its axis is,

dq dq

A 1
dE = — =k———>- 1
4ne, AP @+ (D
a 5 p dEcos0
o" - a 5> Its direction is from A to P. Now consider two

dEsmng components of d E), (i) dEsin®, perpendicular to the
axis of the ring and (ii) dEcos0, parallel to the axis.

Here it is clear that in the vector sum of intensities due to all such elements taken all over
the circumference, the dEsin® components of the diametrically opposite elements will meet each
other as they are mutually opposite. Hence only dEcos® components only should be considered
for integration.

. The total intensity of electric field at point P.

_ _ (x—Y%__op . _ oP
E = JdEcosG = Jk(a2+x2) AP (" cos® = E)
dq X .
E = k‘l.(a2+x2) 1 (from equation 1)
(a” +x7)?
VE=k——3 [ da = kXQ3:4nla e
(a2+x2)2 surface (a2+x2)2 0 (a2+x2)2

(2) Surface Charge Distribution
As shown in figure 1.13 suppose the charge is distributed continuously over a surface. We

want to determine the force on the charge g placed at point P having position vector 7 due
to these charge distribution.

7 4 Here, charge is distributed continuously over a surface
) A . .
Ia ;ﬁ 1 having surface charge density o(7 ).
] 7
- Surface charge density is the charge per unit area.
4)' F
r . __ Total Charge on the Surface _ Q . . )
q = Surface Arca =% Unit of 0 is Cm™~.
v Imagine the entire surface to be divided into large
0 *» Y
number of small surface element of dg'. The charge in
X > .
Figure 1.13 area element dgq' will be,
Surface Charge Distribution
dg = o(7") |da'| (1.8.5)
Force acting on charge g due to this charge (dg) will be,
(9)(dq)
dF = k(P =7 ) (1.8.6)
[ r—r'l

The total force on g due to charge on the surface can be determined by taking surface
integration of above equation,
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From equation 1.8.5 and 1.8.6,

S . Mddl - -,
F = [dF = qu(T:)—L;'(r—7 ) (1.8.7)
S s |lr—r'

If the charge at point P is very small, then electric field at that point,
7 o(r)|da ,

BoE g rlddl o o
4 s lr=r'l

Illustration 16 : As shown in the figure, a square having length a has electric charge
distribution of surface charge density 6 = G, xy. Calculate the total electric charge on the
square. The Cartesian co-ordinate system is shown in the figure.

Solution : As shown in the figure, consider an element of area dxdy at a point (x, y).
The charge on the area element is,

dq = o, xy dx dy At

‘. Therefore, the total electric charge on the surface,

a a 2 4 y2 ¢ 2\ 22
Q =g, J-xdx ' J-ydy =G 2| |2 ZGO[TJ(TJ ‘
0 0 0 0

(5614
0 | _—
4 0 il

[]

[x, vl

Q=

(3) Volume Charge Distribution
As shown in figure 1.14, suppose electric charge is distributed continuously over some

volume and volume charge density is p(7 '). zZ1 o
dy
Volume charge density is charge per unit volume.
_ Total Charge _ Q Unit of s Cm™3 3 Fq
= Total Volume v~ -mtobpis tm- .
E’
Imagine the entire volume divided into small volume 9 > Y
elements dV'. The charge in this volume element will be,
N Figure 1.14 Volume Charge
dq = p( r ')dV' Distribution

Force acting on the charge g at point P having position vector 7 due to charge dg will
k(q)(d
be dE = k (q)( q)(? 7
| r— FP
As explained earlier, the total force acting on charge g can be determined by taking volume
integration of above equation.

jp(r')dV' > _ o

de kq )

ViF—r'P
If charge g is very small, then electric field at point P will be,
F Jp( ryav

5
E =L =k
q

-7 ")

VIr—rI
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1.9 Electric Field Lines

tq P Electric field lines are the pictorial representation of the electric

field produced by the electric charge. Scientist Michael Faraday
introduced the concept of electric field lines and obtained important
results of electric field. (Faraday called these electric field of lines

i

as lines of electric force.)

An electric field line is a curve drawn in an electric field
in such a way that the tangent to the curve at any point is
in the direction of net electric field at that point.

In fact, an electric line of field is the path along which a

{

=

positive charge would move if free to do so.

Now we consider an example of electric dipole to understand

-4 the method of drawing electric field lines.
Figure 1.15 To Draw Electric We can use the equation of electric field to determine the
Field Line of an Electric

Dipole intensity of electric field at any point. As shown in figure 1.15

5

draw a vector of electric field (E,) at a point P, according to magnitude and direction at

electric field at that point. Now consider another point P' close to P and draw a vector of
-

electric field E , at that point according to its magnitude and direction. Similarly draw a vector

N
E, at point P"', very close to P'. Same way other vectors of electric field can be drawn.

P, P', P'" all these points are so close to each other that a continuous curve passes through
the tails of these vectors can be drawn. This curve represents the electric field line. Thus the
curve on which the tangents drawn at different points like P, P', P"' .. and so on, represent the
direction of the electric field at the respective points, is called the electric field line.

Characteristics of Electric Field Lines

(1) Electric field lines start from positive charges and end at negative charges.

(2) The tangent drawn at any points on the electric field lines shows the direction of
electric field at that point.

}52 (3) Two field lines never cross each other.
p If two lines intersect at a point, two tangents can be
drawn at that point indicating two directions of electric
field at that point which is not possible.

o

(4) Electric field lines of stationary electric charge
Figure 1.16 distribution do not form closed loops.
(5) The separation of neighbouring field lines in a region at electric field indicates the
strength of electric field in that region.

In practice, the number of field lines are so restricted

that the number of field lines passing through unit cross

sectional area about a point, kept perpendicular to electric
field lines is proportional to the intensity of electric field

at that point. If the field lines are close to each other, the

electric field in that region is relatively strong, if the field

Figure 1.17 Intensity of Electric
Field
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From the figure 1.17, it is clear that at point P, electric field is relatively strong than

electric field at point P,. J

A N
i | ey
\S@é/ \i\e/ﬁ/ & l;fif”{%ﬁff 5 / \
e\l
450 g <0 = o, S =

Figure 1.18 Electric Field Lines of Some Systems of Charges

(6) Field lines of uniform electric field are mutually parallel and equidistant.

Note : The electric field lines are geometrical representation of electric field and are not
real. But electric field is a reality.

Figure 1.18 shows the electric field lines of some systems of charges.

Here, the field lines are drawn in a plane but are actually they are in three dimensional
space.
1.10 Electric Flux

Coulomb’s law is the fundamental law in electrostatics, we can apply Coulomb’s law to find
electric field at any point. Another equivalent of Coulomb’s law is Gauss’s law. Gauss’s law is
useful to determine the electric field of the system of charges having symmetry. Before we
discuss Gauss’s law we discuss the concept of electric flux.

The concepts of electric flux relates the electric field with its source. Flux is simply a
mathematical concept which can be interpreted physically. Flux is a characteristics of all types
of the vector fields.

= =
> Al

/(I
; P/ /q\(/ 3
NN e e =

Ll
>
—| >

¥ = E
- S L/\/
/ AcosO
(a) (b) (c) ~
0=0,0d=EA ¢ = EAcosO 0 =90° ¢ =0

Figure 1.19 Electric Flux for Uniform Electric Field

Electric flux is quantity proportional to the number of electric field lines passing through
surface. (Here we use the word proportional because the number of lines we choose to draw

. : . . L = - .

arbitrary.) Consider a surface of area A placed in a uniform electric field E. Surface A is
-

perpendicular to E as shown in figure 1.19. Area A is vector quantity and its direction is

along the outward drawn normal to the area. Here, area vector A and E both are in the same
direction.

Electric field can also be defined in terms of the electric field lines. Electric field at any
point is the number of electric field lines are passing through a surface of unit area placed
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perpendicular to the electric field at that point. Therefore, the number of lines passing through
surface of area A will be EA. This is an electric flux ¢ associated with the given surface.
Thus, electric flux is the number of lines passing through the surface. It is represented as ¢.
~ 0 = EA (1.10.1)
If the surface under the consideration is not perpendicular to the field, the number of lines

passing through it must be less. As shown in figure 1.19(b), if the surface of area A is making

an angle O with the direction of electric field E, then to determine the electric flux linked with

the surface, we have to consider the AcosO® component of the A parallel (or anti-parallel) to
the electric field. Hence, Electric flux linked with the surface is,

¢ = EAcos6 (1.10.2)
In the vector form,
O=E-A (1.10.3)

Electric flux is a scalar quantity. Its SI unit is Nm?> C™' or V m. From equation 1.10.2, it
is clear that flux can be positive, negative or zero. If the surface is parallel to the electric field

then, X 1 E Hence, the flux linked with surface will be ¢ = EAcos90° = 0. For 6 < 90°,

flux is positive and for O > 90° it is negative. If the field lines are entering in the close
surface, then flux linked with this surface is considered to be negative and if the field lines are
leaving the surface, the flux is considered to be positive. (See the figure 1.20).

o=20 o > 0 (Positive Flux) ¢ < 0 (Negative Flux)

Figure 1.20 Electric flux
Now, we will discuss the general definition of electric flux.

As shown in figure 1.21, consider an arbitrary surface in
the electric field. Divide this imaginary surface into small
surface elements. If the element is infinitesimally small and
surface is not highly irregular, each surface element can be
considered as a plane. In such a small element we can
consider an electric field to be uniform. Each of these small
surface element can be represented by an area vector. The
magnitude of this vector should be equal to the area of
surface element and direction is along the normal to the
surface. If the surface is closed, i.e. surface enclosed the
volume, then such vectors are drawn in outward direction of
closed surface.

Figure 1.21 Electric Flux
Linked with the Surface Placed
in Non-uniform Electric Field

Suppose the vector Aaj is an area vector of j™ element and the electric field at this

element is EJ,. As the area of this element is very small the electric field does not change

appreciably at all the points over the element. Hence, the electric flux associated with the j®
surface element will be.

0, = E; A0 (1.10.4)
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Total flux ¢ linked with the surface can be determined by adding the flux associated with
all such elements.

0= YE A0 (1.10.5)
J

lim
. - . _ . .
Taking |Aaj | >0, i.e. considering each element as small as possible, the summation taken

in equation 1.10.5 can be written as integration.

lim - =
¢ = |Aa 10 2E;- A0
J

0= [ Eda (1.10.6)

surface

Equation 1.10.6 is known as the surface integration of E over surface a.

Thus, the general definition of electric flux can be given as follows :

‘The flux lined with any surface is the surface integration of the electric field over
the given surface.’
1.11 Gauss’s Law d Zail,

The integration of electric field over a closed surface which E
enclosed the charges, leads us towards the Gauss’s law. Gauss’s
law is one of the fundamental laws of nature. To understand

this law, consider the following example :

Consider a point charge +¢g located at the centre O of the
sphere of raidus r. See figure 1.22. Now, we will determine the
total flux linked with the surface of a sphere.

According to definition of flux, total flux linked with the
Figure 1.22 Flux Associated

surface, with the Sphere

- -
O = jE.da = jEdacose (1.11.1)
S S

N

All the points on the surface are at equidistant from the centre, hence magnitude of E will
be same at every points at the surface. The electric field due to a point charge is radially
outward.

Hence, area vector 4; of each surface element will be along the direction of E(e = 0).
From equation 1.11.1

o = J-Eda (*cosO = 1)

N

= Ejda = g 7 X 4mr? (Area of the surface of sphere is 47'Er2)
4n80r
q
= = 1.11.2
o =3 ( )
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Here, the flux is independent of the radius of the sphere; hence it is true for any closed
surface. Equation (1.11.2) is the general result of Gauss’s law. Gauss’s law statement is as
follows, we will accept it without proof.

Guass’s Law : The total electric flux associated with any closed surface is equal to the
ratio of the net electric charge enclosed by the surface to €,

- 2q
a

= = (1.11.3)

N
Flux associated with any closed surface, ¢ = jE.d 2
N

The law implies that the total electric flux through a closed surface is zero if no charge

is enclosed by the surface.
Let us note some important points regarding this law :
(1) Gauss’s Law is true for any closed surface, no matter what its shape or size.

(2) The term g on the right side of equation (1.11.3), includes the sum of all charges enclosed

by the surface. The charges may be located anywhere inside the surface.

q, (3) The electric field appearing on the left hand side of

]
equation 1.11.3 is the electric field produced due to a

bl =

system of charges, whether enclosed by the surface or

outside it.

As for example ¢,, q,, q;, q, and g as shown in figure

1.23. To calculate the electric flux passing through surface

=g . . . .o, .
Surface (S) S, E is determined by taking the vector addition of the

Figure 1.23 electric fields at the surface due to all the charges, which
is used in the left side of the equation (1.11.3). But on the
right side of the equation (1.11.3) we should consider the charges ¢g,, g, and g, to calculate
net charge 2g.
Flux linked with the surface S,

_ q, +q,+qs
q) - 80

(4) The surface that we choose for the application of Gauss’s Law is called Gaussian
surface.

(5) Gauss’s Law is useful towards a much easier calculation of electric field when system
has some symmetry.

Ilustration 17 : An electric field prevailing in a region depends only on x and y

xi+ yf

. . . =g . .
co-ordinates according to an equation, E = bx2+y2 where b is a constant. Find the flux

passing through a sphere of radius r whose centre is on the origin of the co-ordinate system.
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Solution : As shown in the figure, 7 is the unit vector in the

. . d
direction of , .

’.\+ ¢+ A — x;‘l‘y‘;
Fo= r = w NOW, E = bﬁ
r X +y

~

N
E.

2 o N N 2 2
> | MW | xi+yi+zk ; _ bda X *+Y b
dd = b[ zj.fda = Iy > da

x2+y

R
‘[E-dz - b jda = boan = anbr
r r

¢ = 4mbr
Illustration 18 : Calculate the total electric flux linked with a circular disc of radius a,
situated at a distance R from a point charge q.

[Hint : er—r = — 1

——
(R2+r2)% \/(R2+r2)

Solution : Consider a thin circular ring of radius r and width dr as shown in figure. The
electric field intensity at some point P on the ring is given by,

- k g
dE|= 3 s
X

The area of the ring is ldd| = 2mrdr.

dd is perpendicular to the plane of the

ring and makes an angle 6 with dE . The flux 4
passing through the small area element of the
disc is given by,

do = |dE| |d a |cosO

k d
X—Z X 27rdr X % = 2mkgR X % = 2mkgR X % (v x> =R>+ 1)

R%+17)2

_ T rdr _ S S - 1L
- Total flux ¢ = 275qu.[ 3 = 2Tcqu! (R2+r2)] = 2mkgR [R I(R2+a2)]

0(R?+7%)2 0
Ilustration 19 : Q amount of electric charge is uniformly distributed on a ring of radius
r. A sphere of radius r is drawn in such a way that the centre of the sphere lies on the
surface of the ring. Calculate the electric flux associated with the surface of the sphere.
Solution : It is evident from the geometry of the sphere that

OP = O00' and O'P = 0'O. Hence, AOPO' is an equilateral
triangle.

. ZPOO' = 60° or ZPOQ = 120°

Hence, the chord PO'Q of the ring will subtend an angle 120°
at its centre. Hence, it is evident that the length of the chord will
be equal to one third of the circumference of the ring. The total

charge residing on this chord (enclosed by sphere) PO'Q will be
Q

equal to 3

From Gauss’s Law, the total flux passing through surface of the sphere is equal to %.

Electric Charge and Electric Field - 29



1.12 Applications of Gauss’s Law

The electric field of any symmetric charge distribution can be easily determined by using
Gauss’s Law. Let us consider some examples.

(1) Electric Field_)Due to an Infinitely Long Straight Uniformly Charged Wire :

da TIP Q . An infinitely long and linear charge
/FE\ . i F\ distribution having uniform linear charge
— ' 1 £ —
euau=tly I SR i 1 1,da _____ density A is shown in figure 1.24. We want
Electric field \ ) to find the intensity of electric field at point
linear s Cylindrical ) ) )
K L s{Gaussian Surface P situated at a perpendicular distance r

Figure 1.24 Infinitely Long Wire having Linear Charge from the linear charge distribution.
Distribution
Since the wire is of infinite length, the electric field at all points line P, Q, ..... situated at

the same perpendicular distance from the wire will be same.

Now imagine a cylindrical Gaussian surface of radius r and length L, whose axis coincides
with the line of linear charge distribution. At all the points at such a cylindrical surface the
electric field is same and directed radially outward. The area of this curved surface of cylinder

is 2mrL and cross sectional area is Tr®. The charge enclosed by the cylinder of length L is
qg = AL
As shown in figure, electric flux associated with cylindrical surface of radius r and length
L is,
- -
o, = J‘E'da = JEdacosO = Ejda
. 0, = EQ2nrL) (1.12.1)
Now, the flux associated with the two end sides of cylinder perpendicular to axis is,
- -
o, = .[E-da = JEdacos90° =0

. Total flux, ¢ = ¢, + ¢, = 2nArL)E

According to Gauss’s Law, ¢ = 2mL)E = % = (2nrL)E = i;—L
. Y |
- E= ey T (1.12.3)

Electric field is in the direction of raidus, hence taking 7 as the unit vector in the direction
of radius.

A
27[80

E = p (1.12.4)

S =

Illustration 20 : An electric dipole is prepared by taking two electric charges of 2 X 107%c
separated by distance 2 mm. This dipole is kept near a line charge distribution having density
4 x 107*C/m in such a way that the negative electric charge of the dipole is at a distance 2 cm
from the wire as shown in the figure. Calculate the force acting on the dipole. Take kK = 9 x 10°
Nm?C~2,
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Solution : The electric field intensity at some point r .:

from continuous line charge distribution having density A I s "+ ’
is given by the following formula. + .
+ ¥ = o=l +
—2k\g » a + e e e e — >
FromE:%l:M,Ez 4; and?zwz + X
me, r r - r + r, —3lcm — ———>
2 mm
. P 2 1_17,
. Resultant force, F = F, + F = 2kA\g rr |
:2><9><109><4><1o—4><2><10—8[ L1 }
22x107  2.0x107% |

= —0.65{ N
(2) Electric Field Due to a Uniformly Charged Infinite Plane Sheet :
As shown in Figure 1.25, we want to find the electric field at point P situated at a
perpendicular distance r from the infinite plane sheet of uniform surface charge density ©
(The figure shows only a small part at the infinite plane sheet.)
It can be inferred from the symmetry that on either side and equidistant from the plane,

points like P and P' the magnitude of electric field will be same. But the direction of electric
field at these two points are perpendicular to the plane and mutually opposite. (If the charge
on the plane is positive / negative, the direction of the field will be away / towards the plane).

As shown in the figure 1.25 consider a close Infinite Plane

cylindrical Gaussian surface having cross-sectional area = o I of Charge
. . . . + £
A and equal length on either 81d'e of t'he cylinder. The da (_, ~(.-..f 4 ( 07
charge enclosed by the close cylinder is ¢ = OA since E‘:é : o 91- E
the surface charge density of plane is O. Pl : + | Gaussian
&
The flux linked with the curved surface of i Surface

cylinder is Figure 1.25 Electric Field due to

Infinite Plane Sheet of Uniform

5
o, = JE dd JEdacos90 =0 (1.12.5) Surface Charge Density

- )
because for curved surface, E and d_a> both are perpendicular to each other.

The flux linked with the surface of area A at the end of cylinder at point P is,

E-dd = [Edacos0 = [Eda = EA (1.12.6)
Same way, flux linked with surface area A at point P' is, (bp, = EA (1.12.7)

Thus, total flux, ¢ = ¢, + (j)p + ¢, =0+ EA + EA = 2EA

According to Gauss’s Law, ¢ = 2EA = %
A
= 2EA = ‘;—0 (" g = OA)
R (1.12.8)
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This equation shows that electric field at a point is independent of the distance of the point
from the plane.

Electric field in a vector form is represented as,

g _ fo] N

E = 2 A (1.12.9)

Where, 7 is a unit vector normal to the plane and going away from it. If the charge on

a plane is negative, then E is towards the plane and perpendicular to it.
Equation (1.12.8) is used to calculate the electric field intensity and direction of the electric

field between two planes having surface charge density G, and O,.

5 5,
i K. Two parallel planes S, and S,
" i i " having surface charge density O, and
E, —BE,
i E M . O, respectively are shown in figure
2 1 2
E, ] — ] — — —

; | R | o 1.26. E, and E, are the electric
s —_— field produced due to the charge on
E=E, +€ M Z_Bim N E=E +E, .

TR | E.=E/+E, I N the S, and S, respectively.
5] 62 From the figure, electric field at
Figure 1.26 point P,
o 2 2 _% % 9% , o
E, = E + E, = 2%, + %, © 2% (in S,S, direction)

Electric field at point Q,

g 0,70, . . .
+ E, = 2, (in S,S, direction)

Electric field at point R, (for ¢, > ©,)

— — - 01—02
ER = El =+ E2 = 28

(in S,S, direction) (1.12.10)
0

Illustration 21 : A particle of mass m and charge g is attached to one end of a thread.
The other end of the thread is attached to a large, vertical positively charged plate, having
surface charge density G. Find the angle the thread makes with the plate vertical in equilibrium.

Solution : Electric field produced due to positively charged plane is,

The forces acting on the charge and components of the
tension (T) produced in string are shown in the figure.

MTcosO
In the equilibrium,

T cos® = mg and T sin® = gE

£=
i Tsin® qE gE qo

.tan9=m—g=m

)
mg o0 = tan_l(z,zggoj

:
]
+

= [ Physics 1



(3) Electric Field Due to a Uniformly Charged Thin Spherical Shell :

Let 0 be the surface charge density on a spherical shell having radius R, as shown in
figure 1.27. Therefore, total charge on the shell,

g = OA = O(4mR?)
The electric field produced from such a spherical shell is radial. We want to determine the
electric field at points inside and outside the spherical shell.

Gaussian Surface

+

s +

.+
herical Shell
Spherical She Gaussian Surface"“--..___.d,-ﬂ"’j

(a) (b)
Figure 1.27 Electric Field of a Spherical Shell

(1.12.11)

(1) For a Point Lying Inside a Shell : Consider a spherical Gaussian surface of radius

r'(r' < R), concentric with the shell (See figure 1.27)

Since the charge enclosed by such a surface is zero then according
to Gauss’s Law,

- o
jE.da =< =0 (v g =0
E =0

Thus, electric field inside the charged spherical shell is zero.
(2) For a Point Lying Outside the Shell :

(1.12.12)

To determine electric field outside the shell, consider a spherical Gaussian surface of radius

r(r > R). (See figure 1.27 (b))
According to Gauss’s Law, flux linked with this surface,

jE.dZ = %

q - . . .
IEdacosO =z (o E and 4 4 are in the same direction.)

4a
€

E(4nr?)

. _ 1 g
'E_4n80r2

For an electric field on the surface of a shell, put r = R.

1 49
E = =
dme, R

Electric Charge and Electric Field

(1.12.3)

(1.12.4)

R



Equations 1.12.3 and 1.12.4 shows that for an electric field outside the sphere the entire
charge on a shell can be treated as concentrated at its centre.

Putting, ¢ = (47R*C in equation 1.12.4

1 (47‘[R2)G

E =

dme,, 72

(1.12.5)

Figure 1.28 shows the variation of electric field
intensity with distance from the centre O to the

region outside the uniformly charged spherical shell.

Inside the shell E = 0. The magnitude of E is

maximum on the surface (r = R). However, outside

L

0 r
(distance from centre of sphere)

1
he shell electric fiel T rdin 3.
Figure 1.28 Electric Field of a Spherical Shell the shell electric field decreases) according to r2

(4) Electric Field Intensity Due to Uniformly Charged Sphere :

"‘EE Let p be the volume charge density of a charged

sphere having radius R as shwon in figure 1.29. The

charge inside the sphere is
Gaussian sphere

inside the
| surface 4
/ q = (3TRO)p. (1.12.6)
A ~—Gaussian sphere
e - outside the
R surface The electric field due to such a sphere is radial.
Figure 1.29 Electric Field due to We want to determine the electric field at points

Uniformly
Charged Sphere
(1) For Point Lying Inside the Sphere : Imagine spherical Gaussian surface of radius r'

inside and outside for such a charge sphere.

(where r' < R) concentric with sphere to determine the electric field at a distance r' (point P")
from the centre of sphere. The charge enclosed by such a sphere is.

4
q' = (gﬂ:r'3)p (1.12.7)
_ 4.3 q .
= 37 X 7] (From equation 1.12.6)
—ﬂ:R3
3
1 r'3
.q' = q? (1.12.8)
The flux linked with the Gaussian surface.
Baz = L
J‘ aa €y
3
12 qr .
E@mr ©) = R (From equation 1.12.8)
g
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q r' '
fE = Gpg 18 (for r' < R) (1.12.9)

i.e. Inside the sphere, E o r'
By putting the value of g from equation 1.12.6, we can represent electric field in terms of
charge density.

pr'

3 (for r' < R) (1.12.10)
0

E =

(2) For Point Lying Outside the Sphere : Now, consider a Gaussian surface of radius r
(where r > R). The centres of two spheres coincide with each other. The charge enclosed by this
surface is g. According to Gaussian’s Law.

- - i
jEd(l = 80
q
Eda = -
[Eda g
E@nd) = o
1 4
E= gz (for r 2 R) (1.12.11)

This shows that a point outside the sphere the entire charge of the sphere can be

considered as concentrated at its centre. Thus, for a point outside the sphere, E o 2

In above equation put g = (%nR3)p,
We can have electric field in terms of p.

3

R
E = —F A (1.12.12)
3rig,
E
. . . E_ oEsess
Figure 1.30 shows the variation of electric mas 't
field intensity with distance r from the centre O Q)O” | E o ﬁ
to the region outside the charged sphere. Note '
that electric field on a surface of sphere is '_ 5
0 r=R I distance from
. centre of sphere
maximum (E = 1 iz) R b
47T80 R Figure 1.30 Electric Field of a Charged

Sphere

SUMMARY

1. Electric Charge : Just as masses of two particles are responsible for the gravitational
force, charges are responsible for the electric force. Electric charge is an intrinsic
property of a particle.

Charges are of two types : (1) Positive charge (2) Negative charge.

The force acting between two like charges is repulsive and it is attractive between two
unlike charges.

The SI unit of charge is coulomb (C).
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Quantization of Electric Charge : The magnitude of all charges found in nature are in
integral multiple of a fundamental charge. Q = ne where, e is the fundamental unit of
charge.

Conservation of Electric Charge : Irrespective of any process taking place, the
algebraic sum of electric charges in an electrically isolated system always remains
constant.

Coulomb’s Law : The electric force between two stationary point charges is directly
proportional to the product of their charges and inversely proportional to the square of the
distance between them.

94, 1 44
F =k =
72 dng, 2

If g,q, > 0, then there is a repulsion between the two charges and for g,q, < 0 there
is an attractive force between the charges.

Electric Field Intensity : The force acting on a unit positive charges at a given point
in an electric field of a system of charges is called the electric field or the intensity of

electric field (E) at that point.

ﬁ
E =

o1

The SI unit of E is NC! or Vm™.
If 7, o, .. r_; are the position vectors of the charge g, g,, .... g, respectively then

1° 20

neot electric field at a point of position vector 7 s,

- & q; S5 o
E=kX557 (F=r)

N
= 3
= r—r.|

>

Electric Dipole : A system of two equal and opposite charges, separated by a finite
distance is called an electric dipole.

Electric dipole moment 17 = (2 a )q
The direction of ; is from the negative electric charge to the positive electric charge.

Electric field of a dipole on the axis of the dipole at point z = z,

= 2kp N
E(z) = ? p (for z >> a)

Electric field of a dipole on the equator of the dipole at point y = y.

E(y) = —7 p (for y >> a)

The torque acting on the dipole place in the electric field at an angle ©,

- -
T

- - .
= p X E, |t| = pEsin®
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9. Electric Flux : Electric flux associated with surface of area Z, placed in the uniform

electric field.
0 = E.A = EAcos®

. = -
where O is the angle between E and A .

Its unit is Nm?C! or Vm.

10. Gauss’s Law : The total electric flux associated with the closed surface,

= o Zq
0 J da £
S
where 2q is the net charge enclosed by the surface.
11. Electric field due to an infinitely long straight charged wire,

_> . . . .
E = ﬁ % 7, where, r is the perpendicular distance from the wire.
0

12. Electric field due to uniformly charged infinite plane, E = 2;:0

13. Electric field due to uniformly charged thin spherical shell,
(1) Electric field inside the shell E = 0.

(2) Electric field at a distance r from the centre outside the shell,

_ .49 _ o
E—kr2—8

R?
2
0o r

, where R = radius of spherical shell.
14. Electric field due to a uniformly charged sphere of radius R,
(1) Electric field inside the region of the sphere :

Q r _ pr

T Amg F T 3

(2) Electric field outside the sphere,

R3p
3r280

Q

dmte

1
E() = Jag 17 =

where, Q is the total charge inside the sphere.

EXERCISE

For the following statements choose the correct option from the given options

1. The force acting between two point charges kept at a certain distance is ¢. Now
magnitudes of charges are doubled and distance between them is halved, the force acting
between them is .........

(A) o (B) 40 (C) 80 (D) 160
2. An electric dipole is placed in a uniform field. The resultant force acting on it .......... .

(A) always be zero (B) depends on its relative position

(C) never be zero (D) depends on its dipole moment.
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10.

11.

12.

An electric dipole is placed in an electric field of a point charge, then ..........

(A) the resultant force acting on the dipole is always zero

(B) the resultant force acting on the dipole may be zero

(C) torque acting on it may be zero

(D) torque acting on it is always zero.

When an electron and a proton are both placed in an electric field .......... .

(A) the electric forces acting on them are equal in magnitude as well as direction.
(B) only the magnitudes of forces are same

(C) accelerations produced in them are same

(D) magnitudes of accelerations produced in them are same.

The electric force acting between two point charges kept at a certain distance in vacuum
is o. If the same two charges are kept at the same distance in a medium of dielectric
constant K. The electric force acting between them is .......... .

(A) o (B) Ko (C) Ko (D) /K

The distance between two point charges 4g and —q is r. A third charge Q is placed at
their midpoint. The resultant force acting on —¢g is zero then Q = .......... .

(A) —q (B) q (C) —4q (D) 4q
The linear charge density on the circumference of a circle of radius ‘a’ varies as
A = Ajcos6. The total charge on it is ....... )

(A) zero (B) infinite ©) TEa?LO (D) 2ma

Two identical metal spheres A and B carry same charge g. When the two spheres are
at distance r from each other, the force acting between them is F. Another identical
sphere C is first brought in contact with A, then it is touched to sphere B and then
separated from it. Now the force acting between A and B at the same distance is ..........

(A) F (B) 2F © ¥ D) +

Two point charges of g and 4q are kept 30 cm apart. At a distance .......... , on the
straight line joining them, the intensity of electric field is zero.

(A) 20 cm from 4q (B) 7.5 cm from g¢q

(C) 15 cm from 4q (D) 5 cm from ¢

The dimensions of permittivity [€)] are ......... .Take Q as the dimension of charge.

(A) MlL—2T—2Q—2 (B) M—ILZT—3Q—1 (C) M—IL—3T2Q2 (D) M—1L3T—2Q—2

The electric dipole moment of an HCL atom is 3.4 x 10° Cm. The charges on both
atoms are unlike and of same magnitude. Magnitude of this charge is .......... . The

(&)
distance between the charges is 1 A

A) 17 x 1020 C B)34x102C € 68x102°C D) 34x10"°cC

There exists an electric field of 100 N/C along Z—direction. The flux passing through a
square of 10 cm sides placed on XY plane inside the electric field is .......... .

(A) 1.0 Nm¥C  (B) 2.0 Vm (C) 10 Vm (D) 4.0 Nm*C
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14.

15.

16.

17.

18.

19.

20.

21.

The radius of a conducting spherical shell is 10 mm and a 100 pC charge is spread on

it. The force acting on a 10 UC charged placed at its centre is .......... k=9 x10°
MKS.
(A) 10°N (B) 10°N (C) zero (D) 10°N

When a 10 pC charge is enclosed by a closed surface, the flux passing through the
surface is ¢. Now another —10 UC charge is placed inside the closed surface, then the
flux passing through the surface is ..........

(A) 20 (B) ¢ (©) 40 (D) zero
An electric dipole is placed at the centre of a sphere. The flux passing through the
surface of the sphere is .......... .

2
(A) Infinity (B) zero (C) cannot be found (D) S—Oq

Two spheres carrying charge ¢g are hanging from a same point of suspension with the
help of threads of length 1 m, in a space free from gravity. The distance between them
will be .......... .
(A) 0 (B) 0.5
C) 2 m (D) cannot be determined.
One point electric charge Q is placed at P. A closed surface is placed near the point P.
The electrical total flux passing through a surface of the sphere will be
€0 Q

(A) Q g B) © & (D) zero
Charge Q each is placed on (n — 1) corners of a polygon of sides n. The distance of
each corner from the centre of the polygon is r. The electric field at its centre is ..........

Q Q Q -1, Q
(A) k3 B) n — 1) k3 (© k> ®) ks

r r r r
When two spheres having 2Q and —Q charge are placed at a certain distance, the force
acting between them is F. Now they are connected by a conducting wire and again
separated from each other. How much force will act between them if the separation now
is the same as before ?

(A) F ®) % © £ (D)

o1

The number of electric field of lines emerged out from 1 C charge is ..........
(g, = 8.85 x 107'* MKS)
(A) 9 x 10° (B) 8.85 x 10? (C) 1.13 x 10" (D) infinite

When 10" electrons are removed from a neutral metal plate through some process, the

charge on it becomes .......... .

(A) —-1.6 C B) + 1.6 C (©) 10° C D) 107 C

Electric Charge and Electric Field - 39



22,

23.

24.

25.

A charge Q is placed at the centre of a cube. The electric flux emerging from any one
surface of the cube is .......... .

(A) % (B) % © % (D) %

The liquid drop of mass m has a charge g. What should be the magnitude of electric field
E to balance this drop ?

A = ®) £ (©) mgq D)

As shown in figure the electric flux associated with close surface is ..........

« 2 3 2
(A) g—j (B) g—z
q
.q ©) g (D) zero

As shown in the figure, g charge is placed at the open end of the cylinder with one end
open. The total flux emerging from the surface of cylinder is .......... .

4 2q
(A) & (B) &

®q q
©) 2, (D) zero

ANSWERS

1. D) 2. (A) 3. (0 4. (B) 5. (D) 6. (A)
7. (A) 8. (O) 9. (A) 10. (C) 11. (B) 12. (A)
13. (C) 14. (D) 15. (B) 16. (C) 17. (D) 18. (A)
19. (D) 20. (C) 21. (B) 22. (D) 23. (A) 24.(D)
25. (C)

Answer the following questions in brief :

1.
2.

p—
[y

S PN, R W

How many number of protons of the charge is equivalent to a 1 uC ?

Two identical metal spheres of equal radius are taken. One of the spheres has charge of
1000 electrons and another has charge of 600 protons. When the two spheres are brought
in contact with copper wire and removed, what will be the charges on each sphere ?
If g,q, > 0, which type of the force acting between two charges ?

What is a test charge ? What should be its magnitude ?

Define the electric dipole moment and give its SI unit.

What will be the torque acting on the dipole if it is placed parallel to the electric field.
Explain the behaviour of electric dipole placed in the non-uniform electric field.

Give the statement of Gauss’s Law.

Why does the two electric field lines not intersecting each other ?

Draw the electric field lines of electric dipole.

A charge enclosed by the spherical Gaussian surface is 8.85 X 1078C. What is the

electric flux linked with this surface ? If the radius of sphere is doubled, what is the
electric flux ?
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12. Write the conservation law of electric charge.

13. An electric dipole is placed at the centre of the cube. What is the total electric flux
linked with the surfaces of the cube ?

Answer the following questions

1. Write the Coulomb’s Law and represent the forces between the two charges in vector
form.

2. Explain the linear charge density, surface charge density and volume charge density. Also
give their units.

3. What is electric field ? Explain, giving the characteristics of the electric field.

4. Obtain the expression of the electric field at a point on the axis of the electric dipole.

5. Obtain the expression for the torque acting on the electric dipole place in the uniform
electric field.

6. Write the characteristics of the lines of the electric field.

7. Write and explain the Gauss’s Law.

8. Obtain the expression of the electric field due to an infinitely long linear charged wire
along the perpendicular distance from the wire.

9. Derive the expression of the electric field produced due to uniformly charged infinite
plane.

10. Using Gauss’s Law, find the intensity of the electric field inside and outside the charged
sphere having uniform volume charge density.

Solve the following examples

1. A metal sphere is suspended through a nylon thread. When another charged sphere
(identical to A) is brought near to A and kept at a distance d, a force of repulsion
F acts between them. Now A is brought in contact with an identical uncharged
spheres C and B also brought in contact with an identical uncharged sphere D and
then they are separated from each other. What will be the force between the

spheres A and B when they are at a distance % ? [Ans. : F]

2. Two identically charged spheres are suspended by strings of equal length. When they are
immersed in kerosene, the angle between their strings remains the same as it was in the
air. Find the density of the spheres. The dieletric constant of kerosene is 2 and its density

is 800 kg m™. [Ans. : 1600 kg m™]

3. Three point charges 0.5 UC, —0.25 UC and 0.1 UC are placed at the vertices A, B and
C of an equilateral triangle ABC. The length of the side of triangle is 5.0 cm. Calculate
resultant force acting on the charge placed at point C. k = 9 x 10° SI.

[Ans. : E = 0045 3, ¥3)N]

4. Three identical charges g are placed on the vertices of an equilateral triangle. Find the
resultant force acting on the charge 2g kept at its centroid. (The distance of the centroid
from vertices is 1 m). [Ans. : Zero]

5.  An electric dipole of momentum F is placed in a uniform electric field. The dipole is

rotated through a very small angle 0 from equilibrium and is released. Prove that it

executes simple harmonic motion with frequency f = ﬁ JPT. Where, I = moment of

inertia of the dipole.
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10.

11.

12.

2

The surface charge density of a very large surface is —3.0 X 10°°Cm™. From what

distance should an electron of 150 eV energy be projected towards the plane so that its
velocity becomes zero on reaching the plane ? Charge of an electron = 1.6 X 107¢c,
1 eV =16x10"] g =9 x 107" SL [Ans. : 9 X 107'm]
Two small, identical spheres, one positively charged and another negatively charged are
placed 0.5m apart attract each other with a force of 0.108N. If they are brought in
contact for some time and again separated by 0.5m, they repelled each other with force
of 0.036N. What were the initial charges on the spheres ?

[Ans. : g, = £3.0 X 107°C, q,= ¥10 X 107°C]
Two charged particles of mass m and 2m have charges +2¢g and +¢q respectively. They
are kept in a uniform electric field far away from each other and then allowed to move
for some time f. Find the ratio of their kinetic energy. [Ans. : 8 : 1]

A simple pendulum is suspended in a uniform electric field

=

E as shown in the figure. What will be its period if its length
is [ ? Charge on the bob of pendulum is g and mass is m.

E
0
/ [Ans.:T:ZTE' l T |
3 22 2
2 qg°E° 2gqE
J[g +7—TC’0S6J

A charge of 4 X 107%C is uniformly distributed over the surface of sphere of radius lcm.

Another hollow sphere of radius Scm is concentric with the smaller sphere. Find the
intensity of the electric field at a distance 2cm from the centre. kK = 9 X 107 SI.
[Ans. : 9 X 10° NC™']

A An arc of radius r, lying in the first quadrant is
M shown in the figure. The linear charge density on
the arc is A. Calculate the magnitude and direction

of electric field intensity at the point of origin.

[Ans. : E = 3@, making an angle 45° with

O
X-axis in the third quadrant]

A particle of mass 5 X 107 kg is held at some distance from very large uniformly charged
plane. The surface charge density on the plane is 4 X 10°C/m>. What should be the charge
on the particle so that the particle remains stationary even after releasing it ?
g, = 885 x 107°C*°N"'m™, g = 9.8 ms™

[Ans. : ¢ = 2.17 x 1075C)
In the hydrogen atom, an electron revolves around a proton in a circular orbit of radius
0.53 A . Calculate the radial acceleration and the angular velocity of the electron.

m, = 9.1 X 107" kg, e = 1.6 x 107°C.
[Ans. : a, = 9.01 X 10 m/s>, ® = 39 X ' rad/s)
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2.1 Introduction
In Chapter 1, we learned about the types of electric charge, the forces acting between the
charges, the electric fields produced by a point charge and by different charge distributions and

ELECTROSTATIC POTENTIAL AND CAPACITANCE

Gauss’ theorem. The force acting on a given charge ¢ can be found by knowing the electric
field. Now, if the electric charge is able to move due to this force, it will start moving and in
such a motion work will be done. So, now in this chapter we shall study in detail, the physical
quantities like electrostatic energy, electrostatic potential that give information about the work
done on the charge. Moreover electric potential and electric field, both the quantities can be
obtained from each other. We will also know the relation between them.

A simple device which stores the electric charge and electrical energy is a capacitor. We
shall also study about the capacitance of a capacitor, the series and parallel combinations of
capacitors, the electrical energy stored in it, etc. The capacitors are used in different electrical
and electronic circuits e.g. electric motor, flashgun of a camera, pulsed lasers, radio, TV etc.
At the end of the chapter we shall see about a device—with the help of which we can get a
very large potential difference—Van de Graaff generator.

2.2 Work done during the Motion of an Electric Charge in the Electric Field

We had seen in Chapter-1 that when an electric

charge ¢ is placed at a point in an electric field E ,

= - . . .
a force F = ¢gE, acts on it. Now, if this charge
is able to move, it starts moving. To discuss the
work done during such a motion, initially we will

consider a unit positive charge.

As shown in the figure 2.1, we want to take a

unit positive charge (¢ = +1 C charge) from point

A to point B, in the electric field produced by a

point charge (Q), and also want to find the work

done by the electric field during this motion.
Many different paths can be thought of to go from
A to B. In the figure 2.1 ACB and ADB paths are  Figure 2.1 Work during the Motion of a

shown as illustrations. Charge
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According to the definition, the force on the unit positive charge at a given point, is

kQ)

5
the electric field E at that point. According to the formula E = > this force varies
r

continuously with distance. Hence the work done by the electric field on unit positive

charge in a small displacement is given by dW = gd_; and the work done during

-

R
A to B by W,, = JEdr (2.2.1)

> —w

B
- >
Here, _[E'dr is called the line integral of electric field between the points A and B.
A

ACB Path : (1) First, we go from A to C on the circular arc AC having radius OA and

then we go from C to B in oc direction. The electric field produced by Q, is normal to the

- - C—> -
arc AC at every point on it (the angle between E and dr = 90°). Hence W,. = ,[E'dr = 0.
A
The work done by the electric field on the path CB, is
B
- [E-ar 2.2.2
W = ! r (2.2.2)
BkQ B | 17
= %4 ariy = kol tar = kQ [}
cr cr c
1 _ 1
W = kQ |73 s (2.2.3)
Thus, on the path ACB, the work done by the electric field
1 _ 1
Wip = Wae+t W = kQ |:rc rB} (2.2.4)

Here, since Fo < Iy, it is self-evident that this work is positive.
(2) Path ADB : From A to D, just like the above, the work done by the electric field is

1 1
obtained as W D = kQ {a - g} Moreover, since the electric field is normal to the arc DB,

the work done in this motion = O.
Hence the work done by the electric field on ADB path is

1 _ 1
Wos = Wop + W = kQ{rA rD} (2.2.5)
Here |r]_;| = |r;| and |r:| = |rg|. Hence from equations 2.2.4 and 2.2.5,
1_1
Wiee = Waps = Wyp = kQ | 7077 (2.2.6)

Thus, in an electric field, the work done by the electric field in moving a unit positive
charge from one point to the other, depends only on the positions of those two points and
does not depend on the path joining them.
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Now, if we move the unit positive charge from point B to A, on any path, the work done
by the electric field, will be given by (according to equation 2.2.6)
11
Wiy = kQ | 5577y (2.2.7)
If a unit positive charge is taken from point A to B on any path and then is brought back
to A on any path, a closed loop is formed (e.g. ACBDA or ADBCA) and on this closed loop

the total work done by the electric field (§ E-J;); will be W . + W, = 0 (using equations
2.2.6 and 2.2.7). You are aware of the fact that a field with this property is known as a
conservative field. Thus electric field is also a conservative field. [In Standard 11 you had
also seen that the gravitational field is also a conservative field.]

Although we have considered the work done on unit positive charge, all these aspects are
also applicable to the work done on any charge q, but for that, the right hand side of the above
equations for the work, should be multiplied by ¢. e.g., Work for A to B will be W, =
B

- -
qu~dr. Moreover, you will be able to understand that instead of the work done by the
A

electric field, if we want to find the work required to be done by the external force
against the electric field (for the motion without acceleration), then the negative sign will
have to be put on the right hand side of the above equation (2.2.1) for the work. Hence for

B

unit positive charge, such a work will be given by WA'B = —J‘ﬁjr) which is the same in
A

magnitude as work given by equation 2.2.1 but has the opposite sign to it. For charge q such

. . " ¢ =
a work will be given by W, = —qu-dr .
A

B
From this discussion we should remember that JEJ}, that is the line integral of electric
A

field between A to B — is the work done by the electric field in moving a unit positive charge

from A to B and it does not depend on the path. Moreover, f’E)d_r) = 0. E-ar is also

sometimes written as E -4/ where g/ is also a small displacement vector
2.3 Electrostatic Potential

We know that the work done by the electric field in moving a unit positive (+1 C) charge
from one point to the other, in the electric field, depends only on the positions of those two
points and not on the path joining them.

If we take a reference point A, and take the unit positive charge from point A to B; A

to C; A to D; ... etc in the electric field, then the work done by the electric field is obtained
B C D
- - - - - - i . .
as W, = iE'dr, W, = ;[E'dr, W, = ;[Edr,... respectively. But the reference point A is

already fixed, hence the above mentioned work depends on the position of the other points

(B, C, D, ...) only. Conventionally the reference point is taken as a point at infinite distance

from the source of electric field. Hence to bring a unit positive charge from that point to a
P

point P in the field, the work done by the electric field is given by the formula W_, = jﬁci_r)

oo
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and it becomes the function only of the position of point P. But, if we want to find the work
required to be done against the electric field; in order that the motion becomes ‘“motion
without acceleration,”

N

P
the formula W;p = — JE'dr has to be used.

An important characteristic of an electric field is called electrostatic potential and with
reference to the work done on unit positive charge, it is defined as under :

“Work required to be done against the electric field in bringing a wunit positive
charge from infinite distance to the given point in the electric field is called the
electrostatic potential (V) at that point.”

Here the meaning of ‘“against the electric field” is actually ‘‘against the force by the
electric field”. We will call the electrostatic potential as electric potential in short.

According to the above definition, the electric potential at a point P is given by the formula

P
v, = —jg.d—; (2.3.1)

In other words this formula represents the definition of electric potential.
From this formula the potential difference betwen points Q and P is given by

Q—> - P—> -
V, -V, = -[B-ar |- |-[E-ar (2.3.2)
L P P
- - - - - -
= jE'dr —+ JE r = J.E'dr (2.3.3)
Q oo Q
Q
- -
- _[Ea (2.3.4)
P

This potential difference shows the work required to be done to take a unit positive
charge from P to (), against the electric field and in that sense it also shows the potential
of Q with respect to P. Very often the potential difference is in short written as p.d. also. The
unit of electric potential (and hence that of the potential difference also) is joule / coulomb

joule

which is called volt (symbol V) in memory of the scientist Volta. i.e., volt = ————
coulomb

I
ok
Electric potential is a scalar quantity. Moreover, we have obtained electric potential from the

V = It’s dimensional formula is M'L>’T3A™".

vector quantity-electric field E (See equation 2.3.1). In future we will also obtain electric field

. . . . . . . = .
from the electric potential. In the calculations involving electric field E, its three components

Ex, Ey, EZ have to be considered and the calculations become longer, while in the calculations

involving the electric potential, only one scalar appears and hence the calculations become
shorter and easier. Hence the concept of electric potential is widely used. Absolute value of
electric potential has no importance, only the difference in potential is important.
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[For Information Only : Galvani (1737—1798) produced electricity by placing two different
metallic electrodes in the tissue of frog. He called it Animal Electricity. Volta explained that the
above process had nothing to do with the characteristics of the frog, but one can generate
electricity by placing two dissimilar metallic electrodes on any wet body. He was the one who
designed the electro chemical cell, which we studied earlier as voltaic cell.

The importance of electric potential in electricity is similar to the importance of
temperature in thermodynamics and the height of fluid in hydrostatics. The electricity flows
(i.e. the electric current flows) from an electrically charged material having higher electric
potential to an electrically charged material having lower electric potential. Quite similar to
water, which flows from a higher level to a lower level or like the flow of heat which flows
from a region having higher temperature to a region having lower temperature. Thus, the direction
of the flow of electric current between two materials depends on their electric potentials.]

Ilustration 1 : Suppose an electric field due to a stationary ‘r’h
P(2,8)

charge distribution is given by E = ky; + kxj, where k is a '
—_—

constant. (a) Find the line integral of electric field on the linear dr
path joining the origin O with point P(2, 8), in the Figure. For OP
(b) Obtain the formula for the electric potential at any point on y=dx

the line OP, with respect to (0, 0) 0 > X

Solution : (a) The displacement vector g, on the line OP is ar = dx; + dyj

-

~dr = (kyi + kxj) - (dxi + dyj)

kydx + kxdy = k(ydx + xdy)

Moreover, on the entire OP line y = 4x (. the slope of a straight line is constant)
soody = 4dx

. The line integral of electric field from O to P, is

il

(2.8)

P P 2
[B-dl = kJOdx+xdy) — g | [4xdx+xaan)]  _ [8rar (A
(0] (0] (0, 0) 0

_ 2T e
=3 20—16

(b) In order to obtain the potential at any point Q(x, y) on the line OP with respect to (0,
Q% -
0) we can use V(Q) = —JE~a’l
0

()
- JSkxdx (from equation A)
)

. V(Q

0
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Illustration 2 : The electric field at distance r perpendicularly from the length of an

infinitely long wire is E(r) = 2ncyr where A is the linear charge density of the wire. Find

the potential at a point having distance b from the wire with respect to a point having distance

a from the wire (¢ > b). [Hint : J.%dr =In r].

b—> -
Solution : V, — V = —IE'dr
a a
F
- -
= _J-Zneor (E”d”)
a
A {1 I S
= T 2mg, ,[Fdr = T 2mg, [In r]a = T 2mgyr [Inb—ina]
a

S a
= 2mg, In (b)
For reference point a, taking V= 0

A a
. Vb = 2ng, In (E)

\
Ilustration 3 : An electric field is represented by E = Ax}, where A = 10 e Find

the potential of the origin with respect to the point (10, 20)m.

Solution : E = Ax; = 10x;}
0,0
V(0, 0) = V(10, 20) = - [ B.@
(10, 20)
0,0) 0
_ - j (10x7)-(dxi +dy]) — —jmxdx
(10, 20) 10

, 10
= —10{)‘7} = [0 — (=500)] = 500 volt
10

Since V(10, 20) is to be taken as zero,

V0, 0) = 500 volt.
2.4 Electrostatic Potential Energy

In the previous article (2.2), we had discussed the work done by the electric field on a unit
positive charge and then also on the charge g, during the motion in the electric field. Moreover
we had also talked about the work required to be done by the external force against the
electric field, in which the motion of charge is without acceleration only. Hence its velocity
remains constant and its kinetic energy does not change. But the work done by this external
force is stored in the form of potential energy of that charge. From this, the electric potential
energy is defined as under :

“The work required to be done against the electric field in bringing a given charge
(@), from infinite distance to the given point in the electric field is called the electric
potential energy of that charge at that point.” Here ‘“motion without acceleration” is
implied when we mentioned” ‘“work required to be done.”
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From the definitions of electric potential energy and the electric potential, we can write the
electric potential energy of charge g at point P, as

¢ - - P—> -
Up= -JaE-ar = -4JE-ar 2.4.1)
= 4V, (2.4.2)

Moreover, we can also call the electric potential at point P as the electric potential energy
of unit positive charge (¢ = +1 C) at that point. That is,

electric potential | _ Jelectric potential energy of unit
ata given point [ — | positive charge at that point

For more clarity in this discussion, we note a few important points as under :

(1) When we bring charge g (or a unit positive charge) from infinite distance to the given
point or when we move it from one point to the other in the field, the positions of the
sources (charges) producing the field are not changed. (We will imagine these sources as
being clamped on their positions by some invisible force !!)

(2) The absolute value of the electric potential energy is not at all important, only the
difference in its value is important. Here, in moving a charge ¢, from point P to Q, without
acceleration, the work required to be done by the external force, shows the difference
in the electric potential energies (UQ — U,) of this charge ¢, at those two points.

Qa -
LU, - U, =~ |[Edr (2.4.3)
P

(3) Here, electric potential energy is of the entire system of the sources producing the
field and the charge that is moved, for some one configuration, and when the configuration
changes the electric potential energy of the system also changes. e.g., when the distance
between them is r, it is one configuration and if distance r changes, the configuration is also
said to be changed and hence the electric potential energy of the system is also said to be
changed. But as the conditions of the sources producing the field are not changed, the entire
change in the electric potential energy is experienced by this charge ¢ only which we have
moved. Hence we are able to write U, = U, as the difference in potential energy of this
charge ¢ only. Because of this reason we have mentioned “potential energy of charge g~ for
equation 2.4.1 and “potential energy of unit positive charge” in the discussion that followed it.
2.5 Electric Potential due to a Point Charge

o,

We want to find the electric potential V(P), due to a VA sto oo
. . . . &,
point charge ¢, at some point P, at a distance r from it. ’
For this we will put the origin of co-ordinate axes "(,
0, at the position of that charge. See figure 2.2. Here p,* I
o
oP = 7. According to the definition of electric poten-
tial we can use the equation.
P 7
- -
VP) = —|E-ar (2.5.1)
Moreover, we can also write this equation in g 3%
another form as
(= - Figure 2.2 Potential due to Point
= JEd D.
V(P) .}[ r (2.5.2) Charge
P o
- - -
because, jE-dr = —IE-dr.
% P
. . k
At this point P, E>= 2q P (2.5.3)

r
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. From equation 2.5.2

vp) = [YMiarr = [Mar
Pr rr

k
ve) =
1

or V(P) = 47%%

(2.5.6)

(2.5.7)

This equation is true for any charge, positive or negative. The potential due to a positive
charge is positive and that due to a negative charge is negative (as q is to be put with negative

sign in the above equation.)

It is self evident from equation 2.5.6 that as the distance r increases, the electric potential

1
decreases as e

In case of potential also superposition principle is applicable. To find the

electric potential due to many point charges we should find the potential due to every charge
according to equation 2.5.7 and they should be added algebraically.

Illustration 4 : A point P is 20 m away from a 2 UC point charge and 40 m away from
a 4 NC point charge. Find the electric potential at P.

(1) Find the work required to be done to bring 0.2 C charge from infinite distance to the

point P.

(2) Find the work required to be done to bring —0.4 C charge from infinite distance to the

point P. [k = 9 X 10° N m?> C?]
. kg, kg, 9, 9
Solution : V, = T = k Tl+§
=9 x 100 | 22007 x0T pgh oy
20 40
(1) W, =V, ¢g," = (1800)(0.2) = 360 I.
(2) W, =V, ¢q," = (1800)(-0.4) = =720 ]
2.6 Electric Potential due to an Electric Dipole
equator 4, We have seen in Chapter-1 that two equal and
E opposite charges (+ g and — ¢g) separated by a
'Fr
" » finite distance (= 2a) constitute an electric dipole.
1
)
E ,.r::' Such a dipole is shown in the figure 2.3, with
(r>>2a) i i ’,,: the origin of co-ordinate system O at its mid-point.
#
| 4 The magnitude of the dipole moment of the dipole is
RS e
i P a ;I s p = ¢q(2a) and its direction is from negative to the
L] &,
¥ g !f positive charge that is, in AB direction.
o &
E&i"«. P :‘ We want to find the electric potential at point P
2 ! “n... .r far away from the mid-point O of dipole and in the
A ‘*‘ AT L e
g 0 +q axis direction making an angle O with the axis of the
< 2u 4 dipole. Let OP = r, AP = r, and BP = r. At P, the

Figure 2.3 Potential due to an
Electric Dipole

» .

electric potential is equal to the sum of the poten-
tials produced by each of the charges.
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V() = 4, T 4me,, A (2.6.1)
_ 9 |1_1
T odmeg, |1, T
q -r

= 4n80[ T } (2.6.2)

Since P is a far distant point, r >> 2a and hence we can take AP || OP || BP. In this
condition the figure 2.3 shows that

{for numerator of equation (2.6.2), r_ —r, = AM =2a cos0 } (2.6.3)

and for denominator, r_=r,_=r

We have considered a very far distant point as compared to the length (2a) of the dipole.
The molecular dipoles are very small and such an approximation is very well applicable to them.
From equations (2.6.2) and (2.6.3), we get

q 2a cosf
V(r) = E[—zj (2.6.4)
r
1 pcosO
= 47[80 r2 (265)
Writing the unit vector in the direction Op as 7, we can wirte p.# = p cosb.
V(DY = e B ) 2.6.6
- V(r) = agg; 5 (for 7 >> 2a) (200

r

Note : The dipole obtained in the limits ¢ — o and a — 0, is called the point dipole. For
such a point dipole the above equation is more accurate, while for the physical dipole - found
in practice - this equation gives an approximate value of the electric potential. Let us note a
few points evident from equation (2.6.4), as under :

(1) Potential on the Axis : For a point on the axis of the dipole

1
06 =0o0rm .. V=125

D
0 r
From the given point, if the nearer charge is +¢q, then we get V as positive and if it is

—q, then we get V as negative.

(2) Potential on the Equator : For a point on the equator 6 = V=20

s
2
(3) The potential at any point depends on the angle between its position vector 7 and ?

1
(4) The potential due to a dipole decreases as 2z with distance (while the potential due

1

to a point charge decreases as +

with distance). We have seen in Chapter 1 that the electric

1
field due to a dipole decreases as 73)

Ilustration 5 : When two dipoles are lined up in opposite direction, the arrangement is
known as a quadruple (as shown in the Figure). (1) Calculate the electric potential at a point
z = z along the axis of the quadruple and (2) If z >> d, then show that,
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Q 24’
j V@ = 4rey 5

" PR i 7 Note : 2|Q|d” is called the quadruple moment.
i -2 ) P . :
i“' : |L Solution : (1) Let z be the Z co-ordinate of point P.
d d The electric potential at point P, due to +Q charge
(which is at the left hand side of the origin) is,
_ _KQ
v, = 22 (1)

The electric potential at point P due to the +Q charge which is at the right hand side of
the origin is,

_ _kQ
Vv, = z—d (2)
The electric potential at point P, due to —2Q charge present at the origin is,

— k(2Q)
v, = - o (3)

. The total potential at point P,
V(z) vV, + V, +V,

11 2 2z 2| |24
= kQ [z+d+z——d‘3] = kQ LZ-cﬂ Z} B "QL@Z—dZJ

(2) If z >> d, we can neglect d’ in comparison with z? in the denominator of right hand
side of the above equation.

. QR4 Q 24°
V@ =TT T dngy

Ilustration 6 : Charge Q is distributed uniformly over a non-conducting sphere of radius
R. Find the electric potential at distance r from the centre of the sphere (r < R). The electric

% r#. Also find the

, . o 1
field at a distance r from the centre of the sphere is given as dme, R

potential at the centre of the sphere.
Solution : The electric potential on the surface of such a sphere is,

_ 1 Q
VR) = 4me, R
. ra -
As a result, we can use the equation V(r) — V(R) = _JE~ ¥
R
1
~ V() — VR) = ‘hm %rdr PP Codr = dr#)
R0 R
r 21"
= - Q3J‘rdr = — QS[%}
4meR™ o 4mg R R
___Q [2 R
4ng,R7 |2 2
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1l
=
Z
+

@)
1
m|7~"
|
ST
|

" V(1)

. _ Q ——
- V() = dne, R T 8me R’ (R? — 17

1 Q [3_ r
. V(l") 411380 ﬁ F ,r <R

At the centre of the sphere r = 0, .. V (centre) = #80 (%]
2.7 Electric Potential due to a System of Charges

In a system of charges, point charges could have been distributed descretely (separated
from each other) while in some system they could have been distributed continuously with each
other. In some system of charges the distribution of charges could be a mixture of any type
of these two distributions. 1

(a) Descrete Distribution of Charges

In figure 2.4, point charges ¢, ¢,, q; - q, are

A

shown as distributed descretely. The position vectors of
these charges with respect to the origin of co-ordinate

- S S
[ A

system are 5, r,,..r respectively. We want to find the

electric potential due to this system, at point P with

position vector 7. For this we will find the electric

potential due to every point charge and then will make

summation. sq,
That is, V = V1 + V2 + .+, (2.7.1) Figure 2.4 Potential Due to Descrete
Charges
= L4 kL + o (2.7.2)
() rlp e r2p e rnp
Where r, == distance of P from ¢, = |7 - ?l
Similarly r, , ..., r, —are the corresponding distances.
p np
q q q
1 1 1 2 1 n
= + ... + (2.7.3)
dmeg |7 0 A 17 G Mo 177 |
i k4,
.V = i:1|7_7i| (2.7.4)

(b) Electric Potential due to a Continuous Distribution of Charges
Suppose in a certain region electric charge is distributed continuously. Imagine this region
to be divided in a large number of volume-elements, each one with extremely small volume. If

the volume of such an element having position vector 7' is dt' and at this position the

volume-density of charge is p(? '), then the charge in this element is p(? 'y dt', and it can
be treated as a point charge. The electric potential due to this small, volume element at point

P having the position vector r , is
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N
| plrdt
av = — S5 S (2.7.5)
47580 | r — rvl
By integrating this equation over the entire volume of this distribution, we get the total
potential at point P, which can be written as under :

%‘dV
V(7)== L [ AR (2.7.6)

41{80 volume lr— il

If the charge distribution is uniform, p(7 ') can be taken as canstant (= p).
(¢) A Spherical Shell with Uniform Charge Distribution :

In Chapter 1, we had seen that the electric field at a point outside and at a point on
the surface of spherical shell with uniform charge distribution is equal to the electric field
obtained by considering the entire charge of the shell as cencentrated.at the centre of the shell.

We have obtained the electric potential from the electric field (V =—JE)~d_r>). For electric

potential also the entire charge can be considered as concentrated at the centre of the shell.
Hence the potential at a point outside and at a point on the surface of the shell having charge
g and radius R, is

_ 1 g S
V= et (for r > R) (2.7.7)

where r = distance of the given point from centre of shell.

Moreover, we also know that the electric field inside the shell is zero. Hence during the
motion of unit positive charge inside the shell no work is required to be done. Hence the
potentials at all points inside the shell are equal having the value equal to the potential on the

. _ 1 4q <
surface of that shell. i.e. V = Jme, R (for r £ R) (2.7.8)

(Note that here, only that work is accounted for which is done during the motion of unit
positive charge from oo to the surface of the shell.)

2.8 Equipotential Surfaces

An equipotential surface is that surface on which the electric potentials at all points
are equal.

A One Equipotential The electric potential due to a point charge is given
Surface )
by V = 4 Hence if r is constant, V also becomes
dme, 1
constant. From this we can say that for a single point

charge ¢, the equipotential surfaces are the surfaces of

M

the spheres drawn by taking this charge as the centre.
(See figure 2.5). The potentials on two such different
surfaces are different but for all the points on the same
surface the potentials are equal. The electric field

produced by a point charge is along the radial directions
Figure 2.5 Equipotential Surfaces . . . . . .
drawn from it. [For +¢ they are in radial directions going
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away from it and for —g coming towards it.]. These radial lines are normal to those equipotential
surfaces at every point. Hence at a given point the direction of electric field is normal to an
equipotential surface passing through that point. We shall now prove that this is true not only for
a point charge but in general for any charge configuration.

Suppose a unit positive charge is given a small displacement d7 on the equipotential
surface (along this surface), from a given point. In this process the work required to be done

against the electric field (by the external force) is dW = —E-dl = potential difference
between those two points.
But the potential difference on the equipotential surface = 0.
- o - -
E-dl =0 = E dl cos® = 0, where 6 = angle between E and d!
But E#0and dl #0 - cos®=0 . 6 =% - E L dl.
But dl is along this surface. Hence the electric field E \"\x > \x >T
is normal to the equipotential surface at that point. el .
&
Like the field lines, the equipotential surface is also a useful ] e
concept to represent an electric field. For a uniform electric > )
(R CERE Rt B
field prevailing in X-direction, the field lines are parallel to - "7{“"_\)
R\‘/

X-axis and equispaced, while the equipotential surfaces are .
Figure 2.6 Equipotential Sur-

normal to X-axis (i.e. parallel to YZ plane.) See figure 2.6. face for a Uniform Electric Field

(a) Equipotential Surfaces (b) Equipotential Surfaces of a System of
of a Dipole Two Positive and Equal Charge
(Only For Information) (Only for Information)
Figure 2.7

The equipotential surfaces of an electric dipole are shown in figure 2.7(a).

The equipotential surfaces of a system of two positive charges of equal magnitude are

shown in figure 2.7(b).

2.9 Relation between the Electric Field and the Electric Potential

p
In article 2.3, we have obtained the electric potential V = (—J.E-d—r)) from the electric field.

Now, if we know about the electric potential in a certain region, we can get the electric field
from it as well.

We have seen in article 2.3, that from the line integral of electric field between points
P and Q, we can get the potential difference between those two points. (Equation 2.3.4) as
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V. - V. =AV = —|E-ar (2.9.1)

)
lav]
w—0

Now, if these points P and Q are very close to each other, then for such a small

- - -
displacement d [ , integration is not required and only one term E -d! can be kept.

. dV = —E-dl (2.9.2)
If d7 is in the direction of E, E-d{ = E dl cos0° = E dl
.. dV = —E dl
_ =dV
L E= ¥ (2.9.3)

This equation gives the magnitude of electric field in the direction of displacement d 7. Here

% = potential difference per unit distance. It is called the potential gradient. Its unit is % From

Qlz

equation (2.9.3) the unit of electric field is also written as %, which is equivalent to

If we had taken the displacement d? not in the direction of electric field, but in some
—dV.
dl
of that displacement. e.g. If the electric field is in X-direction only and the displacement is

in any direction (in three dimensions), then

other direction, then would give us the component of electric field in the direction

E =Ef and d = dxi + dyj + dzk

dv = — (E i) . (dxi + dyj + dzk)
= —E_dx (2.9.4)
_ —dVv
R (2.9.5)

Similarly, if the electric field was only in Y and only in Z direction respectively, we would get,

Ey = d_y (2.9.6)
_ —dV
E = = (2.9.7)

Now, if the electric field also has all the three (x—, y—, z—) components then from
equations (2.9.5) (2.9.6) and (2.9.7) we can write as under.

_ =V _ =V _ =V
B, =5 B =7 E= (2.9.8)
and B = —(%—ZH%—‘;H%—‘Z’EJ (2.9.9)
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Here %—:, aa—\y/, %—\Z] show the partial differentiation of V(x, y, z) with respect to

X, y, z respectively. Moreover, the partial differentiation of V(x, y, z) with respect to

x means the differentiation of V with respect to only x (i.e. %—X) by taking y and z in the
formula of V, as constants.

In equation (2.9.1), the values of E at all points between P and Q come in the calculation,
while equations (2.9.3) and (2.9.8) give relation between the potential difference near a given
point and the electric field at that point.

The direction of electric field is that in which the rate of decrease of electric potential with

distance (—d;clr\/) is maximum and this direction is always normal to the equipotential surface.

This entire discussion is based on the property that electric field is a conservative field.

2.10 Potential Energy of a System of Point Charges

l

-

52 0C =17,

5
i

<

- _ - _
OA ~— 1> 0B~

L

As shown in the figure 2.8, in a system of charges

e

three point charges ¢, g, and g, are lying stationary at

points A, B and C respectively. Their position vectors

from the origin of a co-ordinate system are 7, r, and

r_; respectively. We want to find the potential energy of

this system. Figure 2.8 System of Point Charges

In the beginning we shall imagine that these charges are lying at infinite distances from the
origin and also from each other. In this condition the electric force between them is zero, and their
potential energy is also zero.

Moreover, the electric fields at A, B and C are also zero. From such a condition the work
required to be done by the external forces (against the electric fields) to arrange them in the
above mentioned configuration is stored in the form of potential energy of this system.

First, we bring the charge ¢, from infinite distance to point A. In this process since no
electric field is present, the work done by the external force against the electric field is W,

= zero. (You know that here the field produced by this charge itself is not to be considered.)

Now the charge set on g,, produces an electric field and electric potential around it. The

potential due to this charge g, at point B separated by distances r , from it is (from equation
2.5.7) is

1 9
Vo = T 7 (2.10.1)
Where 7, = Ir_; - 71’I

Hence the work required to be done by the external force to bring charge ¢, from

infinite distance to point B, is W, = ¢,V = (2.10.2)

2
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(from equation 2.4.2).
(If we want to consider a system of these two charges only, then the total work W, +
1 449

W, = A, T is the electric potential energy of this system.)

Now ¢, and g, both will produce electric fields and electric potentials around them. The

q q
electric potential produced due to them at point C is V. = 4735 r—l ﬁ r—2 (2.10.3)
K 0 23

Therefore, the work required to be done to bring charge g, from infinite distance to point
C is

Wi= (Vog,
1 9% 1 D
T dmg, 1, + dng, 1y, (2.10.4)

Hence the total work to be done to set these three charges in the above arrangement (=
W, + W, + W,) is the electric potential energy U of this system.

1 9% 1 9% 1 D4
- U = dne, 1, dme, K, dng, 1y, (2.10.5)
1 |99 99 93
= Tneg { T T } (2.10.6)
949, 943 |, 993
= k[—+—+—} 2.10.7
o hs 3 ( )
From this, in general, the potential energy of a system of n—charges can be wirtten as
L kqiqj
U= (2.10.8)
i=l Y
i<j

As the electric field is conservative; it does not matter, which charge comes earlier or later.
In that case the electric potential energy does not change (and given by equation 2.10.8 only)

H G Illustration 7 : Calculate the potential energy of the

4;: _F_--ﬁ-'""t.r system of charges, shown in the Figure.
g __,--E*“""‘ 4 Solution : The total potential energy of the system of
El ' F charges is equal to the sum of the potential energy of all the
E % _..*' a pairs of charges.
! :J"i'; (1) There are 12 pairs of charges like the AB pair. The
E : distance between the electric charges in such pairs is equal
,f”,; """"" e to a.
J," - - i The potential energy of all such pairs is
A == 4 kq*
: a U, = % x 12 (1)

(2) There are 12 pairs of charges like the AC pair. The distance between charges in such

a pair is ay2. ("~ AC = JAB*+AC® = Wa’+d’ = a+2). Their potential energy is,

X 12 (2)
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(3) There are 4 pairs of charges like the AG pair. The distance between charges in these

pairs is equal to a 3. (- AG = \/AC2+CG2 = \/2a2+a2= a.f3)
2

Their potential energy is U, = % X 4

(4) There are eight pairs of electric charges similar to AO in which distance between

charges is ‘%E. (AO = % = ‘AZE)

kg 2q
(a

". total potential energy U = U, + U, + U, + U,

Their potential energy is U, = —

wl&

j><8 4)

LU 12k’ 12k dkgt 32k

’ a a2 a3 a3
_ kg [12+£+i—ﬁ} _ kq [121+ 1 }
S R A e Bl R L

2.11 The Potential Energy of an Electric Dipole in an External Electric Field

As shown in figure 2.9, an electric dipole AB is AB = 24, AC = ABcosO

placed in a uniform electric field E in X—direction such

that the axis of the dipole makes an angle 6 with the field = > T

= : . . o B

E. Its dipole moment is ¢g(2a) in AB direction. The / e +4

electric potential energy of this dipole means the algebraic o P / o
sum of the electric potential energies of both of its :.// : -
charges (+¢g and —¢q). We arbitrarily take the potential at ~-q {

the position of —g charge as zero. Hence its potential
energy becomes zero. Now we will find the potential
enegy of +¢q charge with respect to it and it will become Figure 2.9 Potential Energy of
the potential energy of the entire dipole. Dipole

As the electric field is only in X-direction,

W

E = DAV _ —(Vg=Vy)
Ax AC
_ VY .. —
= 5L (v V, =0 (2.11.1)
* V, = —E (2a cos0) (2.11.2)

. Potential energy of +¢q at B, is
U = gV, = ¢q[-E 2a cos8] (2.11.3)
= —E(qg 2a cos0)

= —E p cosO [ ¢gQa) = p]

= _8-7 (2.11.4)
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. The potential energy of the entire dipole U= —E ﬁ) = —1_;? (2.11.5)
We note a few points :

(i) If the axis of the dipole is normal to the electric field, then 6 = and

r
2

z

U =Ep cos5 =0

(ii) If the axis of the dipole is parallel to the field. ( AB I E)
Then © = 0 .. U = —pE. This is the minimum value of potential energy. Hence the dipole

5
tries to arrange its axis parallel to the electric field, so that f;’ becomes parallel to E. In this

condition dipole remains in stable equilibrium. (A system always tries to remain in such a state
that its potential energy becomes minimum.) (For O = 7, the dipole is in an unstable equilibrium.)
2.12 Electrostatics of Conductors

It is interesting to know the effects produced when metallic conductors are placed in the
electric field or when electric charges are placed on such conductors.

(a) Effect of External Electric Field on Conductors

In a metallic conductor there are positive ions situated at the lattice points and the free
electrons are moving randomly between these ions. They are free to move within the metal but
not free to come out of the metal. When such a conductor is placed in an external electric

: = . o .

field E ', the free electrons move under the effect of the force in the direction opposite to the
field and get deposited on the surface of one end of conductor. And an equal amount of
positive charge can be considered as deposited on the other end. Thus electric charges are

5

induced. These induced charges produce an electric field E " inside the conductor, in the
-

direction opposite to the external electric field E . When these two electric fields become

equal in magnitude, the resultant (net) electric field (E) inside the conductor becomes zero.
(See figure 2.10). Now the motion of charges in the conductor stops, and the charges become

steady (stationary) on the end-surfaces.
—

E’ Now let us consider a Gaussian Surface shown by

—
-

W

dotted line, inside the conductor and close to the surface,

as shown in figure 2.10. Every point on this surface is

R A = .
a point inside the conductor; the electric field E on this

entire surface is zero. Hence the electric charge enclosed

> >
Gaussian Surface N q

by it is also zero. (' |E- = 7).

Figure 2.10 Conductor in Electric Field y ( '[ E-dr €o )

Thus in the case of a metallic conductor, placed in an external electric field,

(1) A steady electric charge distribution is induced on the surface of the conductor.

(2) The net electric field inside the conductor is zero.

(3) The net electric charge inside the conductor is zero.

(4) On the outer surface of the conductor, the electric field at every point is locally normal
(perpendicular) to the surface. If the electric field were not normal (perpendicular) a component
of electric field parallel to the surface would exist and due to it the charge would move on the
surface. But now the motion is stoppd and the charges have become steady. Thus the
component of electric field parallel to the surface would be zero, and hence the electric field
would be normal to the surface.
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(5) Since E = 0 at every point inside the conductor, the electric potential everywhere inside
the conductor is constant and equal to the value of potential on the surface.

(6) If there is a cavity inside the conductor then even when the conductor is placed in an

5
external electric field (E '), the net electric field inside the coductor is zero and also inside the
cavity it is zero. Consider a Gaussian Surface around the cavity as shown in the figure 2.11.
Since every point on this surface is a point inside the conductor, the electric field on this entire

surface is zero.

Hence the total charge on the surface of the cavity is zero, Gaussian Surface E'

\
\ .
(JE ds = %) And there is no charge inside the cavity. {

Hence the electric field everywhere inside the cavity is zero.)

W

WY

This fact is called electrostatic shielding. If we are Figure 2.11
sitting in a car and suppose lightning strickes, we should Cavity in a Conductor
close the doors of the car. (we suppose the car is fully made of metal !) By doing so, we
happen to be in the cavity of car and we are protected due to electrostatic shielding.

(b) Effects Produced by Putting Charge on the Conductor

In the above discussion we considered the effects produced when a metallic conductor is
placed in an external electric field. Now we note the effects produced when a charge is placed
on a metallic body, in the absence of an external electric field.

(1) Whether a metallic conductor is put in an external electric field or not and whether a
charge is put or not, on it, in all such (but stable) conditions the electric field everywhere
inside the conductor is always zero. This is a very important and a general fact. (This can
be taken as a property to define a conductor).

(2) The charge placed on a coductor is always distributed only on the outer surface of
the conductor. We can understand this by the fact that the electric field inside a coductor is
zero. Consider a Gaussian Surface shown by the dots inside the surface and very close to it,
(figure 2.12). Every point on it is inside the surface and not on the surface of conductor Hence
the electric field at every point on this surface is zero. Hence according to Gauss’s theorem

the charge enclosed by that surface is also zero. N

(3) In a stable condition these charges are steady on the surface. . ‘_@
This shows that the electric field is locally normal to the surface. : 1-\
(See figure 2.12). 5

(4) The electric field at any point on the charged conductor is

= sgﬁ’ where 4 = unit vector coming out from the surface
0

normally. To prove this, we consider a Gaussian surface of a pill-box Figure 2.12

(a cylinder) of extremely small length and extremely small cross-section ds. A fraction of it is
inside the surface and the remaining part is outside the surface. The total charge enclosed by

this pill-box is ¢ = ods; where G = surface density of charge on the conductor. At every point

= . .
on the surface of the conductor E 1is perpendicular to the local surface element. Hence it is

- -
parallel to surface vector (E Il ds).
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But inside the surface E = 0. Hence the flux coming out from the cross-section of pill-

. . . . . _>
box inside the surface = 0. For its side the area vector (surface vector) is normal to E . Hence
flux through it is zero. The flux coming out from the cross-section of pill-box outside the

surface is Ecﬁ = Eds.

. Total flux = E ds

d
According to Gauss’s theorem, E ds = % = _GSOS (2.12.1)
“E=2 (2.12.2)
&0
= (9
In the vector from E = Pl (2.12.3)
0

. ., . - . . . . . .
If ¢ is positive, E is in the direction of normal coming out from the surface. If O is
. - . . . . . .
negative E is in the direction of normal entering into the surface.

(5) If some charge is placed inside a cavity in the conductor, then the charges are so
induced on the surface of the cavity and on the outer surface of conductor that the electric
field in the region which is inside the conductor but outside the cavity becomes zero. The
electric field inside the cavity is non-zero and the electric field outside the conductor due to that
charge is also non-zero.

[Note (For information only) : In the above discussion we have considered the
coductors to be insulated.

The sharp ends of the conductor have a large electric charge density. The electric field
near such a region is very strong. This strong electric field can strip the electrons from the
surface of the metal. This event is known as Corona discharge. In general, this event is
called dielectric breakdown.

The electrons escaping the surface of a metal perform an accelerated motion, colliding
with the air particles coming in their way. The excited atoms of the energetic particles emit
electromagnetic waves and a greenish glow is observed. Apart from the above process, the
ionization of the air molecules also takes palce, during collision

Sailors long ago saw these glows at the pointed tops of their masts and spars and
dubbed the phenomenon St. Elmo’s fire.]

2.13 Capacitors and Capacitance

. Consider an insulated conducting sphere as shown in the figure
Conducting Sphere . . .

2.13. Suppose we go on gradually adding positive charge on this
sphere. As the charge on the sphere is gradually increased, the
potential (V) on the surface of the sphere and the electric field

around the sphere also go on gradually increasing. In this process at

Non-conducting . . .. ..
Stand some one stage the electric field becomes sufficiently strong to ionize

the air particles around the sphere. Hence the charge on the sphere
is conducted through air and insulating property of air gets distroyed

Figure 2.13

(i.e. it is not sustained.). This effect is called dielectric breckdown.
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Thus the charge on the sphere is leaked and now the sphere is not able to store any additional
charge. During this entire process the ratio of the charge (Q) on the sphere and the potential (V)

on the sphere remains constant. This ratio is called the capacitance of the sphere. [C = %]

Figure 2.14
The maximum electric field upto which an insulating (non-conducting) medium can maintain
its insulating property is called the dielectric strength of that medium (or the minimum electric
field which starts ionization in a given non-conducting-medium is called its dielectric strength.).

For air the dielectric strength is nearly 3000 nY_m

Now, if we want to increase the capacity of the above mentioned sphere to store charge
(capacitance C), then place another, insulated conducting sphere near the first one. So, electric
charge is induced in this second sphere. See figure 2.14(b). If the second sphere is connected
to Earth, as in figure 2.14(c) electrons from Earth will flow to it and neutralize the positive
charge in it. Now due to negative charge on the second sphere the potential on the surface
of the first sphere and the electric field near it are decreased. Now the capacity to store
charge on the first sphere increases, as compared to earlier. In this condition also the ratio of
the electric charge Q and the p.d. (V) between two spheres at every stage is found to be
constant. This ratio is called the capacitance C of this system of two spheres. The value of
this capacitance depends on the dimensions of the spheres, their relative arrangement and the
medium between them.

“A device formed by two conductors insulated from each other is called a capaci-
tor.” These conductors are called the plates of the capacitor. The conductor with positive
charge is called the positive plate and the one with negative charge is called the negative plate.
The charge on the positive plate is called the charge on the capacitor and the potential
difference between the two conductors is called the potential difference (V) between the two

Q

plates of the capacitor. Here the capacitance of the capacitor is C = V-

The SI unit of capacitance is coulomb / volt and in memory of the great sceintist Michael
Faraday it is known as Farad. Its symbol is F. Farad is a large unit for practical purposes and
hence smaller units microfarad (1 UF = 10%F) nanofarad (1 nF = 10_9F) and picofarad
(1 pF = 107"?F) are used in practice.

A capacitor having a definite capacitance is shown by the symbol 4} and the one having

a variable capacitance is shown by the symbol .

Moreover, a single conducting sphere of radius R and having charge Q can also be
considered as a capacitor, because it also has ‘some’ capacity to store charge. For such a
capacitor other conductor (with —Q charge) is considered to be at infinite distance (separation).
Taking the potential at infinite distance from the sphere as zero, the potential on the surface

kQ

of this sphere is V = R

. Hence the potential difference between this sphere and the other

one imagined at infinite distance is also V = %
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. The capacitance of this sphere is C = % = % = % = 4neR (- K = 47[#80). Earth
can also be considered as a capacitor. You may calculate its capacitance.
2.14 Parallel Plate Capacitor

In such a capacitor, two conducting parallel plates of equal area (A) are insulated from
each other and kept at a separation of (d). (See figure 2.15)

Considering vacuum (or air) as the non-conducting medium between them, we shall obtain
the formula for its capacitance.

Suppose, the electric charge on this capacitor is Q. Therefore, the value of the surface

Q

density of charge on its plates is O = A The value of d is kept very small as compared to

the dimension of each plate. Due to this, the non-uniformity of the electric field near the ends

5
of the plates can be neglected and in the entire region between the plates the electric field E
can be taken as constant.

The uniform electric field in the region between two plates due

I:ﬁﬂ o
to the positive plate is E, = 2_50 in the direction from positive to
Ex=0i2€,
T negative plate. (2.14.1)
E =0le, Similarly the uniform electric field in the same region due to
—
the negative plate, is E, = 2%0 (2.14.2)

Figure 2.15 Parallel Plate

Capacitor . . . .. .
P (Also in the direction from positive to negative plate.)

Since these two fields are in the same direction, the resultant uniform electric field is

S s _ S
E =E +E, =% + 2 =% (2.14.3)
It is in the direction from positive to negative plate.
Q
. E = N (2.14.4)

In the regions on the other sides of the plates, E, and E, being equal but in opposite
direction, the resultant electric field becomes zero.

If the potential difference between these two plates is V, then V = Ed (2.14.5)
. From equations (2.14.4) and (2.14.5),
_
V = soAd (2.14.6)
From the formula C = %, we get the capacitance of parallel plate capacitor as
= %A
= = (2.14.7)

From equation (2.4.7), it is clear that if the distance between two plates each of

(8.85x107"%)(1)
107
If we want 1F capacitance, then the area of each plate kept at a separation of

I m X 1 mis I mm, its capacitance is C = = 8.85 x 107°F.

Cd 110~
I mm should be A = .~ =(X—,)12
0 8.85x10

breadth of each plate should be nearly 1 X 10* m = 10 km.
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2.15 Combinations of Capacitors

The system, formed by the combination of capacitors having capacitances C, C,, ...... , C
has some equivalent (effective) capacitance C. We shall discuss two types of combinations.
(a) Series Combination of Capacitors

The arrangement formed by joining the capacitors having capacitances C,, C,, C;, ..... , C

by conducting wires as shown in figure 2.16 is called the series combination of capacitors.

Gy G C3 Cn
o fopfofsfofy
Vi Va Vi Vi
| |
||I
*

Figure 2.16 Series Combination of Capacitors

In such a condition the charge on every capacitor has the same value Q. As (—Q) charge
is deposited by the battery on one plate, it induces (+Q) charge on the other plate. For this
(—Q) charge from the second plate will be deposited on the near plate of the next capacitor.
This induces +Q charge on the other plate. This continues further. Thus all capacitors have

equal charge. but the potential difference between the two plates of different capacitors is
different. From the figrue it is clear that

V = Vl + V2 + V3 + o + Vv, (2.15.1)
Q  Q  Q Q
= Cl + C2 + C3 + ... + Cn (2152)
_Q
(v C, = V) e etc.)
\Y 1 1 1 1
6:C_1+C_2+C_3+ ...... +C—n (2.15.3)

y_l (2.15.4)

1
E=a+c—2+c—3+ ...... + (2.15.5)
Thus the value of effective capacitance is even smaller than the smallest value of

capacitance in the combination.

[Note that here the formula obtained for series combination is similar to the formula for
effective (equivalent) resistance obtained for the parallel combination of the resistances.]

(b) Parallel Combination of Capacitors

The arrangement formed by joining the capacitors having capacitances C,, C,, C; by
conducting wires as shown in figure 2.17 is called the parallel combination of capacitors.
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In such a combination the potential difference (V) between
the plates of every capacitor is the same and is equal to the

b potential difference between their common points A and B. But
# 1= the charge Q on every capacitor is different.

he Here, Q, = C, V
¢ .;.; - Q,=C VvV
' Q, =C, Vv (2.15.6)
And the total electric charge

||
+]'=

\ Q=Q +Q, +Q
Figure 2.17 Parallel Combination =CV +CV +CV
of Capacitors ! 2 .

= +C +C)V (2.15.7)
If the effective capacitance of this parallel combination is C, then
- Q _
C = v = C, +C, +C, (2.15.8)
If such n-capacitors are joined in parallel connection, the effective capacitance is
C=C +C, +C, + ... + C, (2.15.9)

Here, as the values of capacitances are added the value of effective capacitance is even
greater than the largest value of capacitance in the connection.

[Note that the formula obtained here for parallel combination is similar to the formula for
effective (equivalent) resistance obtained for the series combination of resistances.]

Hlustration 8 : Prove that the force acting on one plate due to the other in a parallel plate

2
capacitor is F = % CTV
Solution : The electric field due to one plate is E, = ZGTO (1)

A second plate having charge GA is present in the above electric field.
. The force acting on the second plate is
F = (CA)E,

Substituting the value of E, from (1), we have,

2
F=92
€9
But0=%
Q2
=_ A
i 7 B, oEh g
: 2¢, T 25,A T 2A/d T 24C CTa T
L p= Lov? (v Q= CV)
T 274 ) N

Illustration 9 : Figure shows an infinite number of conducting plates of infinitesimal
thickness such that consecutive plates are sparated by a small distance dx spread over a
distance d to form a capacitor. Calculate the value of the capacitance of such an arrangement.
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Solution : The capacitance of each of the capacitors in the above arrangement, dC = O—x
All these capacitors are in series combination with each other.

Therefore the total capacitance C is obtained from

1 _ 1L e
c~a T ac *t- gy

= ZA (dx + dx + ... + dx)
1 _ 4
C ~ gA
_ §A € d 3
. C= Y]

This is equivalent to the capacitance of the capacitor formed by the first and the last plate
of the above arrangement.
2.16 Energy Stored in a Charged Capacitor

In order to establish a charge on the capacitor, work has to be done on the charge. This
work is stored in the form of the potential energy of the charge. Such a potential energy is
called the energy of capacitor.

Suppose the charge on a parallel plate capacitor is Q. In this condition each plate of the
capacitor is said to be lying in the electric field of the other plate.

The magnitude of the uniform electric field produced by one plate of capacitor is

(9
= g, (2.16.1)
where ¢ = % and A = area of each plate.

Hence by taking arbitrarily the potential on this plate as zero, that of the other plate at

distance d from it will be = [Q%OJCZ (2.16.2)

From this, the potential energy of the first plate is zero and that of the second plate will be
= (potential) (charge Q on it)

d
= [%%}Q (2.16.3)
~. Energy stored in the capacitor
_odQ _ (Q)dQ _
- Q
T (2.16.5)
g)A . .
where, C = - - capacitance of capacitor.
Moreover, C = % From equation (2.16.5) and this formula we can write
_ VQ
U, = - (2.16.6)
and U, = 3CV? (2.16.7)
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We have derived these equations (2.16.5), (2.16.6) and (2.16.7) for the parallel plate
capacitor, but in general they are true for all types of capacitor.
To show energy stored in the capacitor in the form of energy density :

The energy stored in the capacitor is Uy = %CVZ. This energy is stored in the region

between the two plates, that is, in the volume Ad, where A = area of each plate and
d = separation between them. Hence, if we write the energy stored per unit volume in the
region between the plates — that is energy density — as pg, then

1 2
_ U, Y
Pe = Voume = ~Ad (2.16.8)
1 {84 y2
_ E[ ¢ ]A_d (2.16.9)
_ 1. (VY(v
_ zgo(d)(g) (2.16.10)
_ 1 2 ... vV _
= 5&EB (v 5 =B (2.16.11)

Where % = E = electric field between the two plates. Thus the energy stored in the

capacitor can be considered as the energy stored in the electric field between its plates.
We have obtained this equation for a parallel plate capacitor but it is a result in general
and can be used for the electric field of any arbitrary charge distribution.

Illustration 10 : A capacitor of 4 UF value is charged to 50 V. The above capacitor is
then connected in parallel to a 2 WUF capacitor. Calculate the total energy of the above system.
The second capacitor is not charged prior to its connection with the 4 UF capacitor.

Solution : The energy stored in the capacitor of 4 UF will be
W, =

= 1 x4 x (50?2 =2 x 2500 = 5000 W

The two capacitors are connected in parallel. Let g, and g, be the electrical charges on

capacitors C, and C, respectively after connection. If V' is their common potential difference

4 9>

th itors. (V' = = &
across the capacitors. ( C, Cz)
4@ _ G
ot+q,  GtG6
o -G (D)
By the law of conservation of charge.
q, + 9, = Q (2)
Where Q is the initial charge
Now, Q = C,V = (4)(50)
= 200 pnC
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Putting equation (2) in equation (1) and substituting the value of Q, we have,

200  4+2)
q, 2
_200x2 200
49, = ¢ = 73 MC

From Equation (2)
q, = 200 — 20

3

Calculation of energy : The energy of the first capacitor

2
4 _ {400\’ 1
e = (T) x sl =22 W

The energy of the second capacitor
9 200)*,, _1
2—C2=(T)xm:1111m

The total energy of the system, after combination = 2222 + 1111 = 3333 = WJ

Thus the energy decreased by 5000 — 3333 = 1667 WJ. This energy is dissipated in the
from of heat.
2.17 Dielectric Substances and their Polarisation

Non-conducting materials are called dielectric. Faraday found that when a dielectric is
introduced between the plates of a capacitor, the capacitance of the capacitor is increased. In
order to understand how does this happen, we should know about the effects produced when
a dielectric is placed in an electric field. Dielectric materials are of two types (1) polar and
(2) non-polar.

A dielectric is called a polar dielectric if its molecules possess a permanent dipole moment

(e.g. HCI, H,O, .... etc.) If the molecules of the dielectric do not possess a permanent dipole
moment, then that dielectric is called a non-polar dielectric (e.g. H,, O,, CO,, ..... etc.)

(a) Non-polar Molecule : In a non-polar molecule,
the centre of the positive charge and the centre of the  when E =0 when E #0
negative charge coincide with each other. Hence they do »E,
not possess a permanent dipole moment. Now, when it is
placed in a uniform electric field (EO), these centres are S ¢ d 2
displaced in mutually opposite directions. Hence they now, b= qd =0 p=4q d+0

possess a dipole moment p = gd, where d = the distance

between centres of positive and negative charges after

being displaced, ¢ = the value of positive or negative Figure 2.18  Polarisation of a Non-

charge (See figure 2.18).

polar Molecule

Thus an electric dipole is induced in it. In other words due to an external electric field a
dielectric made of such molecules is said to be polarised. If the external electric field (Eo) is not

5
very strong, it is found that this dipole moment of molecule is proportional to E .

P = OE, (2.17.1)

where o is called the polarisability of the molecule.

. _> . . —
From units of ? and Ey the unit of o is C2m N
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(b) Polar Molecule : A polar molecule possesses a permanent dipole moment P, but such
dipole moments of different molecules of the substance are randomly oriented in all possible
directions and hence the resultant dipole moment of the substance becomes zero.

Now, on applying an external electric field a torque acts on every molecular dipole.
Therefore, it rotates and tries to become parallel to the electric field. Thus a resultant dipole
moment is produced. In this way the dielectric made up of such molecules is said to be
polarised. Moreover, due to thermal oscillations the dipole moment also gets deviated from being
parallel to electric field. If the temperature is T, the dipoles will be arranged in such an

equilibrium condition that the average thermal energy per molecule (%kBT) balances the

potential energy of dipole (U = —?.EO) in the electric field. At 0 K temperature since the

thermal energy is zero, the dipoles become parallel to the electric field. We shall only discuss

such an ideal situation.

(c) When there is air (or vacuum) between the charged plates of a capacitor, the electric

[0)

field between the plates is E, = S—f . (2.17.2)
0

+ -

where G, = value of surface charge density on each plate.

The charge on these plates is called the free charge, because
its value can be adjusted at our will (by joining proper battery).

Here, the area of each plate is = A. Now on placing a slab

of dielectric material (polar or non-polar) in the region between the

plates, the polarisation produced by the electric field Eo is shown

in the figure 2.19. We want to find the electric field inside the
dielectric.

It is clear from the Figure that the opposite charges in the
Figure 2.19 Polarisation in  successive dipoles inside the slab cancel the effect of each other,
Dielectric as they are very close to each other and a net (resultant) charge

resides only on the faces of the slab, close to the plates. These

charges are called induced charges or the bound charges or the polarisation charges. The

charge induced on the surface of the slab close to the positive plate is —G,A and that on the

surface close to the negative plate is +G,A, where —G, and +0C, are, the surface densities of
the bound charges on the respective surfaces. This induced charges form a dipole. Its dipole
moment is P = (0,A)d (2.17.3)

total
where, d = thickness of the slab = distance between two plates. (if sides of slab touch the
plates)
Here, Ad = volume of slab = V (2.17.4)
The dipole moment produced per unit volume is called the intensity of polarisation or in

short polarisation (P).

P (c,A)d
— total — b —
P= volume = Ad Gy (2.17.5)

Thus the magnitude of polarisation(P) in a dielectric is equal to the surface density of
bound charges (0,), induced on its surface. The electric field produced by these induced

5
charges is in the direction opposite to the external electric field E ;. Hence, now the resultant

electric field E inside the dielectric can be considered as produced due to (Gf — Gp).
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Gf —Gb

. E = (2.17.6)

€9

Thus the net electric field inside the dielectric is less than the applied (external) electric
field. (But recall that net electric field in the conductor was zero.)

Moreover, it is found that if the external electric field (E)) is not very strong, then the
polarisation (P), is proportional to the net electric field (E) inside the dielectric.

ie. P o< E

. P=¢gxE (2.17.7)

where x, = constant, which is called the electric susceptibility of the dielectric medium. It
depends on the nature of dielectric and the temperature. The dielectric obeying P o< E is called
a linear dielectric.

P
From equation (2.17.7) x, = SO_E (2.17.8)
°f
Using E) = = and P = G, in equation (2.17.6), we get,
0
g Bg—P
E= ") — (2.17.9)
0
. ¢E = ¢gE — egxE (" From equation 2.17.8 P = €, E) (2.17.10)
. §E + gx,E = €E/ (2.17.11)
Ee (1 + x,) = Eg, (2.17.12)
€,(1 + x,) is called the permittivity(€) of the dielectric medium; i.e. € = g, + x,)
(2.17.13)
. Ee = Eg, (2.17.14)
E= 2.17.15
. = oleg (2.17.15)
Here, g is called the relative permittivity € of the medium and is also called the dielectric

constant of the medium K. Value of K is always greater than 1.

Thus, =~ = ¢, = K (2.17.16)
0
) go(l+x,)
From equations (2.17.13) and (2.17.16), T e = K
0
.K=1+«x (2.17.17)

e

This equation shows the relation between two electrical properties x, and K of the

dielectric.

Now, equation (2.17.15) can be written as

Ey
K
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Thus if the electric field in certain region in the free space is Ej, when a dielecrtic is

placed in that region, the electric field in the dielectric becomes Kt part (i.e., % times), the
value in free space.
Electric Displacement : When a dielectric is placed between the plates of a capacitor, the

Gf—G

net electric field produced in the dielectric is given by E = 2 , where G, = value of

0
surface density of free charges, ¢, = Value of surface density of bound charges.
c,—P

Since ©, = P, we get E = —L (2.17.19)
0

. ¢E + P = G, (2.17.20)
. . - N - - . . . -
The directions of E and ) are the same. €,E + P is called electric displacement D.

- - -
D =gE + P (2.17.20)

It is a vector field. Using the definition of B, many equations regarding electric field

become simpler in form. Gauss’ theorem in the presence of a dielectric is written as

§D.ds =gq (2.17.22)

where ¢ is only the free charge (it does not include the bound charge). Thus in case of

. . . . ® ... ® . =
dielectric the field related to the free charges is not E, but it is p, that is E E + P.
2.18 Capacitor with a Dielectric

When there is air (or vacuum) between the plates of the parallel plate capacitor, its
. . . goA
capacitance is given by C = 5 (2.18.1)

where €, = permittivity of vacuum, A = area of each plate and d = separation between two
plates. Now if the entire region between these plates is filled with a dielectric medium having

permittivity €, then to obtain the formula for its capacitance C', € should be placed in place

of g, in the above formula.

. L cA

s C' o= = (2.18.2)
c _ £ _
c =5 =K (2.18.3)

where K = dielectric constant of that medium.

. C' = KC (2.18.4)

Thus, putting a medium of dielectric constant K between the plates of the capacitor, its
capacitance becomes K times and thus its capacity to store electric charge also becomes K
times.
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Ilustration 11 : A capacitor consists of three parallel plates of equal area A. The distance
between them is d1 and dz' Dielectric material having pemittivity € and €, is present between
the plates. (i) Calculate the capacitance of such a system. (ii) Express this capacitance in terms
of K1 and K2.

Solution : As shown in the figure, the two capacitors are connected in series. If C is the
total capacitance, then

1 _ 1, 1 pieo b o2t
C — C c, Ut T g and by = Ty
1 2
d d
1 _ 4 22 .
T~ gA T 5A Cy G2
dig,A+gAdy  dgy +dyE
£,8,A” ggx A el €,
. L W & *
' T dgytdyy 0T Y T d, , 4
g & B
i
dy a5
& o o
From K, = Ty we get € = €K . Similarly €, = ¢ K,, where € = permittivity of vacuum.
L C = A _ Ag,
: 4 d, 4 d,

gk, ’ gk, K, ' K,
2.19 Van-De-Graaff Generator

With the help of this machine, a potential difference of a few million (1 million = 10° =
ten lac) volt can be established. By suitably passing a charged particle through such a high
potential difference it is accelerated (to very high velocity) and hence acquires a very high

energy (%mvz). Because of such a high energy they are able to penetrate deeper into the
matter. Therefore, fine structure of the matter can be studied with the help of them. The
principle of this machine is as under. =

Suppose there is a positive charge Q, on an insulated conducting
spherical shell of radius R, as shown in the figure 2.20. At the
centre of this shell, there is a conducting sphere of radius

r(r < R), having a charge gq.

Here the electric potential on the shell of radius R, is

Vi = % + ];—q (2.19.1) .
Figure 2.20 Principle of
and the potential on the surface of the sphere of radius 7, is Van—de—Graaff Generator
r = R r 4.

It is clear from these two equations that the potential on the smaller sphere is more and
the potential difference (p.d.) between them is
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— kg [1_%] (2.19.3)

Hence, if the smaller sphere is brought in electrical contact with the bigger sphere then the
charge goes from smaller on to the bigger sphere. Thus charge can be accumulated to a very large
amount on the bigger sphere and thereby its potential can be largely increased.

£y, spulley The machine based on this principle made by Van-De-Graaff,
is called the Van-De-Graaff generator.

As shown in the figure 2.21 a spherical shell of a few meter
radius, is kept on an insulated support, at a height of a few meters

from the ground.
conducting . .
belt A pully is kept at the centre of the big sphere and another

pully is kept on the ground. An arrangement is made such that a
pulley  pon-conducting belt moves across two pulleys. Positive charges are
obtained from a discharge tube and are continuously sprayed on
the belt using a metallic brush (with sharp edges) near the lower

Figure 2.21 pulley. This positive charge goes with the belt towards the upper

Van-de-Graaff Generator  pulley.

There it is removed from the belt with the help of another brush and is deposited on the shell
(because the potential on the shell is less than that of the belt on the pulley.) Thus a large potential
difference (nearly 6 to 8 million volt) is obtained on the big spherical shell.

Mlustration 12 : Q amount of electric charge is residing on a conducting sphere having
radius equal to R,. This sphere is connected to another conducting sphere of radius R, by a
conducting wire. Calculate the electric charge on each of the spheres. The two spheres are
separated by a large distance.

Solution : Let g, and g, be the electric charge present on the two conducting spheres
after being connected with each other.

- Q=gq, +q, (D

The electric potentials of the two spheres have to be the same, since they are connected
by a conducting wire

a4 R o)
R, 7 R, " g = R,

Hta,  Ri+R,

a R

Q R, +R,

@ — R,

R,

- 4, = R+R, Q 3)

Substituting the value of g, in the equation (1), we have

R2
Q=4 + R+R,Q

This gives ¢, = R IR
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Ilustration 13 : Find the effective capacitance of the network shown in the figure and
find the charge on each capacitor.

Solution : Here, C, and C, are in series. Their equivalent Cy, Ilm pF
I
C,C
. . . v 23 _  200x200
(effective) capacitance is C' = C,+C, = 2004200 . 200 pF 200 pF
21 | 3 |
= 100pF. 1 1 +
©300v
This C' and C, are in parallel connection. Their equivalent Cyf | ?_
capacitance is C'' = C' + C, = 100 + 100 = 200 pF. “m:l-l
This C'' and C, are in series. Their Equivalent capacitance is C'"" = C.."C4 = 200x100
4 : q p C'+C, = 200+100
200
R

. . . 200x10~"2 5
Now the charge supplied by the battery is Q = C 'V = | = 3 |(300) = 2 X 10°C.

". charge on C, and C'' are equal and each is equal to 2 X 107%C.

. Charge on C, is Q, = 2 X 10°C = Q"' (on C'")

Charge on C'' is divided on C' and C,. Since C' and C, are of equal values, that charge
is divided equally on them.

. Charge on C, is Q, = 3Q, = 1 x 10°C = Q'... (on C")

The charge on C' has the same value as on C, and C,.
L Q,=0Q,=1x10°C
Ilustration 14 : Find the capacitance of the capacitor shown in the figure. Area of

AB is A. K, K,, K, are dielectric constants of respective materials.

. cA KSOA A B
Solution : We shall use the formula C = a - 4 &
and also use the formulae for series and parallel connections. 4 K,

Here, the capacitors formed by K, and K, are in parallel
and hence their equivalent capacitance is

Koe (A2) K (A2) K K,
_ _ 270 3%0 2
Cu=C+C = —gmy t ~wan

_ §A
= LK, + Ky

The capacitor formed by k1 is in series connection with this C The equivalent

23°
capacitance of the entire system is

KigoA [@(K +K )}
c - CCy a2 | 4 7?2 3 _ 25,A K(K,+Kj)
Ci+Cy KpeoA ) Teoh o e ) d QK +K,+Ky)

/2 d 2T
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‘ Illustration 15 : A capacitor has air between its plates having
separation a. Now a metallic slab of thickness b is placed

‘[ between its plates as shown in the figure. Show that now its
. . €A . .

a Ih capacitance is C = OT;,' Does this value of capacitance depend

J on the position of the metallic slab between the plates ?

Solution : One capacitor is formed in the upper region with

thickness x,. Let its capacitance = C,. Other capacitor is formed
in the lower region with thickness x,. Let its capacitance = C,. In
| the thickness b, there is metallic slab, hence no capacitor is

o= < == formed (because its two surfaces cannot be considered as isolated
¢ . . . .
[ _ — _ I ' from each other.) Here, C, and C, are in series. If their equivalent
i Ii 1 1 X X X, +x
: O P LR D S 2 AThH
l i i i I_i_: capacitance is C; c - + C, = A + A T £oA
| . C = 8OA
o X tx,
. goA .
But Figure shows that x, + x,=a — b .. C = e This value does not depend on the

position of the metallic slab. Put it anywhere but (x; + x,) remains constant and only in this
much region capacitor is formed.

Illustration 16 : The area of each plate of a parallel plate capacitor is 100 cm” and the
separation between the plates is 1.0 cm. When there is air between the plates, the capacitor
is charged with a battery of 100 V. Now the battery is removed and a dielectric slab of
thickness 0.4 cm and dielectric constant 4.0 is placed between the plates. (a) Find the
capacitance before the dielectric is introduced. (b) Find the free charge on the plate and the
surface charge density on it. (c) What is the electric field E; in the region between the plate
and the dielectric ? (d) What is the electric field in the dielectric ? (e) What is the potential
difference between two plates after the dielectric is introduced ?

Solution : A = 100 X 10™*m* d = 1 x 107m, V, = 100 V
d' =04 x 107”m, K = 4.0
(a) When there is air between the plates, the capacitance

A (8.85x107"2

c o= SA )100x107*)
o d 11072
(b) g, = CpV, = (885 x 107'%)(100) = 8.85 x 107 C

This is free charge. The surface density of charge is

= 8.85 x 1072 F = 8.85 pF.

9 _ 8.85x107"
A 100x107*

(c) The electric field between the plate and the dielectric is produced by the charge on the
plate, that is by the free charge.

c = = 885 X 107 C/m?

8
LBy = == 2820 0000 Vim
0 8.85x10
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(d) In the absence of dielectric the electric field at that place would be E;. Now on putting

E
the diclectric there the electric field is E = 2 = % — 2500 V/m.

(e) Now, the potential difference (p.d.) between the plates (from V = Ed) is
V'=E(l - 04) x 107 + E(0.4 x 107
10000 (0.6 X 107%) + 2500 x 0.4 X 1072

=60 + 10 = 70 V.

Illustration 17 : A substance has a dielectric constant 2.0 and its dielectric strength is
20 x 10° V/m. It is taken as a dielectric material in a parallel plate copacitor. What should be

the minimum area of its each plate such that its capacitance becomes 8.85 X 1072 UF and it
can withstand a potential difference of 2000 V ?

Solution : K =2; E =20 X 10° V/im , C = (8.85 X 107%) x 10° F
V =2000V, A =2
Charge on capacitor Q = CV = (8.85 X 10_8) (2000) = 17.7 X 107 C

-5
surface density of charge on the plate 0 = Q _ 17.7x107 C/m?.

A A
If there were air between the plates, the electric field would be E0 = %, but here a
. . - . _E, o
dielectric is placed. Hence the electric field is E = = = Ke, -
¢ 17.7x107 )
. 20 X 10° = = A =05m

(A)(2)(8.85x107'%)

If the value of A is smaller than this, E becomes greater than 20 X 10% and dielectric
breackdown occurs.

Ilustration 18 : Two identical thin rings each of radius R m
are kept on the same axis at a distance of R m apart. If charges on

them are Q, C and Q, C respectively, calculate the work done in
moving a charge Q C from the centre of one ring to that of the other.

Solution :

It is clear from the figure that AO' = BO = VRZ+R? = (J/2)R

Centre of each ring is at equal distance = (42 )R from the circumference of the other ring.

. Potential at O is V1 =

. . 19 19
and potential at O" is V, = 4me, R\2 +
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‘. Potential difference AV = V

. Work W = g(AV) = “meR

1 1
TV, = 4me R Q, - Q) + 4ngORJ§ [Q, — Q]

1 1
= dng R (Ql - Qz) - 471780R-\/5 [Q1 - Qz]

= 41:;01% Q - Qz)[l—%]

= 4n;0R Q - Q2)[ «2/5_1} Y

q(Q,—-Q,) [2%} |

SUMMARY

The information about the work done in taking an electric charge from one point to the
other in the electric field is obtained from the quantities called electric potential and
electric potential energy.

B

Jﬁfr is the line-integral of electric field between points A to B and it shows the work
A
done by the electric field in taking a unit positive charge from A and B. Moreover, it does

not depend on the path and jSEcZ’ = 0.

“The work required to be done against the electric field to bring a unit positive charge
from infinite distance to the given point in the electric field, is called the electric potential
(V) at that point”.

P
Electric potential at point P is Vp = —J‘ﬁd_;
.. joule  _ . _J
Its unit is onlomb = volt. Symbolically V = C

Its dimensional formula is M'L>TA™!
Absolute value of electric potential has no importance but only the change in it is important.
“The work required to be done against the electric field to bring a given change (g) from
infinite distance to the given point in the electric field is called the electric potential
energy of that charge at that point.”

=

U ——fpﬁd = gV
P 6100 =AY,

The absolute value of electric potential energy has no importance, only the change in it
is important.

S

Electric potential at point P lying at a distance r from a point charge ¢ is Vp =

._
=
>

The electric potential at a point at distance r from an electric dipole is V(?) = Jmg, 2
r

... (for r >> 2a)

1
g

Potential on its axis is V. = +7 . Potential on its equator is V = 0

\.\)l..B
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10.

11.

12.

Electric potential at a point r due to a system of point charges 4, 45 - g, situated

at positions o P aor

The electric potential at point 7, due to a continuous charge distribution is

p(ﬁ)dr'

1
V( 7) = 4,

- o
volume | y— 7'|
The electric potential due to a spherical shell is

1

V= dne,

4q - _1 4
PR (for r 2 R) and V = g, R (for r £ R)

A surface on which electric potential is equal at all points is called an equipotential

surface. The direction of electric field is normal to the equipotential surface.

E = _Z—ZV gives the magnitude of electric field in the direction of di . To find E from V,

in general, we can use the equation

= oV, dV =+ dVp
E = —(a—xl‘i‘g‘]ﬁ‘a—zkj

The direction of electric field is that in which the rate of decrease of electric potential

with distance (—;i_lV) is maximum, and this direction is always normal to the equipotential

surface.
The electrostatic potential energy of a system of point charges ¢,, ¢,, ... g, situated
respectively at r,, r,, ... 1,18
L kq,q
i1y
U=Z P where r.. = r. — r.
=1 i o !

i<j
s
The electrostatic potential energy of an electric dipole in an external electric field E, is
-
U=-E.p =-E p cosb.

When a metallic conductor is placed in an external electric field,

(i) A stationary charge distribution is induced on the surface of the conductor.

(i) The resultant electric field inside the conductor is zero.

(iii) The net electric charge inside the conductor is zero.

(iv) The electric field at every point on the outer surface of conductor is locally
normal to the surface.

(v) The electric potential everywhere inside the conductor is the same constant.

(vi) If there is a cavity in the conductor then, even when the conductor is placed
in an external electric field, the electric field inside the conductor and also inside
the cavity is always zero. This fact is called the electrostatic shielding.

When electric charge is placed on the metallic conductor :
(i) The electric field everywhere inside the conductor is zero.
(i) That charge is distributed only on the outer surface of the conductor.
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13.

14.

[y
9]

16.

17.

18.

19.

(iii) The electric field on the surface is locally normal, and is given by E Z[%]ﬁ.

@iv) If a charge is placed inside the cavity in the conductor, the electric field in
region which is outside the cavity but in the conductor remains zero.

“A device formed by two conductors insulated from each other is called a capacitor”. Its

<l

capacitance is C = = constant. The unit of C is coulomb/volt, which is also called

farad.
1 WF = 10° F; 1 pF = 1002 F

A
The capacitance of the parallel plate capacitor is C = 807.

If the effective capacitance in the series combination of capacitors is C,

1 1 1 1
S = =+ & + = F o
c ¢ "¢ T

If the effective capacitance in the parallel combination of capacitors is C,
C=¢C +C, +C, + ...

2 2
The energy stored in the capacitor is U = (22_C = % = % and the energy
density = energy per unit volume = %SOEZ, where E = electric field.

When a dielectric is placed in an external electric field E, polarisation of dielectric occurs
due to electical induction. The electric field produced by these induced charges is in the
direction opposite to the direction of external electric field. Hence the resultant electric

field E, inside the dielectric is less than the external electric field E . The dipole moment
produced per unit volume is called the intensity of polarisation or in short polarisation

PP = o,

Since P o< E, P = gx E. x, is called the electric susceptibility of the dielectric medium.

€, (1 + x,) is called the permittivity € of the dielectric medium. & is called the relative

permittivity of that medium and it is also called the dielectric constant K.

E
K =1+ x, E= =2. Thus in the dielectric the electric field reduces to the K" part.

@ K
= - = . . .
D = gE + P is called the electric displacement. Gauss Law in the presence of
-
dielectric is written as § D d_§ = ¢, where ¢ is only the net free charge.

When there is air (or vacuum) between the plates of a parallel plate capacitor, the capacitance

. goA . . . . . .
is C = OT.On placing a medium of dielectric constant K, the capacitance is C' = KC. Thus

the capacitance becomes K times, due to the presence of the dielectric.

With the help of Van-De-Graf generator a p.d. of a few million volt can be established.
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EXERCISE

For the following statements choose the correct option from the given options

1.

For a uniform electric field E = E (7), if the electric potential at x = 0 is zero, then
the value of electric potential at x = + x will be ........ .
(A) x E,| (B) —x E, (C) x? E, (D) —x? E,

The line integral of an electric field along the circumference of a circle of radius r, drawn
with a point charge Q at the centre will be .......... .

(A) 4,1180 Q (B) %o” (C) zero (D) 2nQr

A particle having mass 1 g and electric charge 10 C travels from a point A having
electric potential 600 V to the point B having zero potential. What would be the change
in its kinetic energy ?

(A) =6 X 107 erg (B) =6 x 107° 7

(C) 6 X 107° 7 (D) 6 X 107% erg

The area of every plate shown in the Figure is A and the separation between the
successive plates is d. What is the capacitance between points a and b ?

(A) g, A/d (B) 2¢, A/d

a >_11

(C) 3¢, Ald (D) 4¢, Ald

A particle having mass m and charge ¢ is at rest. On applying a uniform electric field
E on it, it starts moving. What is its kinetic energy when it travels a distance y in the
direction of force ?

(A) gE% (B) gEy’ (C) ¢Ey (D) ¢’Ey

A parallel plate capacitor is charged and then isolated. Now a dielectric slab is introduced
in it. Which of the following quantities will remain constant ?

(A) Electric charge Q (B) Potential difference V
(C) Capacitance C (D) Energy U.

A moving electron approaches another electron. What will happen to the potential energy
of this system ?

(A) will remain constant (B) will increase
(C) will decrease (D) may increase or decrease

Energy of a charged capacitor is U. Now it is removed from a battery and then is
connected to another identical uncharged capacitor in parallel. What will be the energy of
each capacitor now ?

@ & (B) U © 3 @) 3

A uniform electric field is prevailing in Y-direction in a certain region. The co-ordinates
of points A, B and C are (0, 0), (2, 0) and (0, 2) respectively. Which of the following
alternatives is true for the potentials at these points ?

(A) V, =V, V, >V, B) V, >V, V, =V
€V, <V, V, =V

C

. (D) V, = V,, V, < V_
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10.

11.

12.

13.

14.

15.

16.

The capacitance of a parallel plate capacitor formed by the circular plates of diameter 4.0
cm is equal to the capacitance of a sphere of diameter 200 cm. Find the distance
between two plates.

A)2x10*m @B 1x10*m (C)3x10*m (D) 4 X 10* m

The capacitance of a variable capacitor joined with a battery of 100 V is changed from
2 UF to 10 UF. What is the change in the energy stored in it ?

(A) 2 x102J (B)25x%x 1027 (C)65x%x102] (D)4 x 1027

A parallel plate capacitor is charged with a battery, and then separated from it. Now if
the distance between its two plates is increased, what will be the changes in electric
charge, potential difference and capacitance respectively ?

(A) remains constant, decreases, decreases

(B) increases, decreases, decreases

(C) remains constant, decreases, increases

(D) remains constant, increases, decreases

6 identical capacitors are joined in parallel and are charged with a battery of 10 V. Now
the battery is removed and they are joined in series with each other. In this condition
what would be the potential difference between the free plates in the combination ?

(A) 10 V (B) 30 Vv (C) 60 V (D) % v

Six identical square metallic plates are arranged as in figure. Length of each plate is [.
The capacitance of this arrangement would be .......... .

3¢, 4 gyl
A) 2o B) = 2
(a) = ® 39
d 3 g,° 4yl
2 %0 D 0
© 3% D) =
3d -

In the following table, the area of plates and separation between the plates are given. In

the nearby Figure, g — V graphs for them are shown. Determine which graph is for
which capacitor.

Capacitor area separation
il C, A d
C, 2A d
C, A 2d

(A) 1 - C, 2 - C, 3 - C,

B) I = C 2 - C, 3 - C,

<1 - C, 2 - C 3 > C

>y (D) 1 - C, 2 - C, 3 - C,

A V—x graph for an electric field on X-axis is shown in the figure. In which region is

the magnitude of electric field maximum ?

M

v

ol [ i i i M

A) A

) C

(B) B

(D) D
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17.

18.

19.

20.

21.

The distance between electric charges Q C and 9Q C is 4 m. What is the electric
potential at a point on the line joining them where the electric field is zero ?
(A) 4 kQ V (B) 10 kQ V (C) 2 kQ V (D) 2.5 kQ V
If a capacitor having capacitance of 600 LF is charged at a uniform rate of
50 nC/s, what is the time required to increase its potential by 10 volts.
(A) 500 s (B) 6000 s (C) 12 s (D) 120 s
Two metallic spheres of radii R, and R, are charged. Now they are brought into contact
with each other with a conducting wire and then are separated. If the electric fields on
their surfaces are E, and E, respectively, E, / E, = ... .
(A) R,/ R, (B) R,/ R, (C) R?/ R? (D) R*/ R}
For a capacitor the distance between two plates is 5x and the electric field between them
is E. Now a dielectric slab having dielectric constant 3 and thickness x is placed
between them in contact with one plate. In this condition what is the p.d. between its two
plates ?
13Ex 9E x

3 2
In the figure area of each plate is A and the distance between consecutive plates is d.
What is the effective capacitance between points A and B ?

(A) (B) 15 E, x (C) 7 E, x (D)

(A) gA/d (B) 2¢,A/d A 2
3 B
(C) 3eAld (D) 4eAld
4
ANSWERS

I.B) 2. (C) 3 (C) 4B 5@ 6 (A
7. B) 8 (C) 9. (A) 10. (B) 1. (D) 12. (D)
13. (C) 14. (B) 15. (C) 16. (C) 17. (A) 18. (D)
19. (A) 20. (A) 21. (C)

Answer the following questions in brief :

1.
2.

8.

What is line integral of electric field ? What does it indicate ?

If the electric potential at point P is V,, what is the electric potential energy of charge
g at this point ?

What is the electric potential at a point on the equator of an electric dipole ?

What is electic potential gradient ? Give its unit.

Electric field is always .......... to the equipotential surface and in a direction in which the
rate of decrease of potential is .......... .

Give the formulae for the equivalent (effective) capacitance of capacitors in series and parallel
combinations.

How does the energy density associated with an electric field depend on the value of
electric field ?

What is meant by a non-polar molecule ?
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10.
11.

12.

14.

15.

Define intensity of polarisation (or in short polarisation) P.

Write the formula showing the relation between x, and P.

Electric field at a point in free space is 100 N/C. What would be the electric field in
a medium with dielectric constant 5, placed at that place ?

What is the meaning of the relative permittivity € of a dielectric medium ?

State thef use of Van-de-Graf generator.

A g I |
1l . . . . .
_I_ What is the equivalent capacitance between points A and B in
[ the figure ? (Hint : The last capcitor on right side is short
_I_ circuited. .. it is not effective)
c
BO H [Ans : C/2]
| lc
i What is the equivalent capacitance between points A and
{ B shown in the figure ? (Hint : The last capcitor on
Ao—— —_ = p—ul . . . .. .
: right side is short circuited. .. it is not effective)
o [Ans : 2C]

11

Answer the following questions

1.

10.

11.
12.
13.

14.

15.

16.
17.

Show that the work done by the electric field in moving a unit positive charge from one
point to the other point in an electric field depends only on the positions of those two
points and not on the path joining them.

Define electric potential and give the formula corresponding to it. Write its units and
dimensions.

Define electric potential and obtain the formula for the electric potential due to a point charge.
Derive the formula for the electric potential due to an electric dipole at a far distant point
from it.

What is an equipotential surface ? Show that the direction of the electric field at a given
point is normal to the equipotential surface passing through that point.

Obtain the formula which can give electric field from the electric potential.

Derive the formula for the electric potential energy of an electric dipole in a uniform
electric field.

Explain in short the effects produced inside a metallic conductor placed in an external
electric field.

What is a capacitor ? Give the definition, and units of capacitance. On which factors
does the value of capacitance depend ? Give the symbol of capacitor.

Obtain the formula for the equivalent (effective) capacitance in the series / parallel
combination of capacitors.

Obtain the formula for the capacitance of a parallel plate capacitor.

Obtain the formula for the energy, stored in the capacitor and also for the energy density.
Explain the polarisation produced in the dielectric placed between the two plates of a

parallel plate capacitor and obtain the formula P = G,.
The resultant electric field inside a dielectric placed between two plates of a capacitor is

G0y . E L . .
E = fg— Hence obtain E = ?O, where Eo = external electric field on the dielectric.
0
. Gr=Gy ) . ) -
Using E = z obtain the formula for the electric displacement D . State the

. 5"

importance of D.

Obtain the formula showing the principle of Van-De-Graaff generator.
Only draw the Figure and explain the working of Van-de-Graf generator.
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Solve the following examples

1.

g, = 2C and g, = =3 C charges are placed at (0, 0) and (100, O)m points respectively.
At which point(s) on the X-axis is the electrical potential zero ?
[Ans. : 40m, —200 m]
Two metallic spheres having radii a and b, are placed very far from each other and are
joined by a conducting wire. The total charge on them is Q. Find (i) the charge on each
sphere and (ii) potential on each sphere.
[Ans. : Q, = 22, = 2L v =v, = £
In a certain region the electric potential is given by the formula V(x, y, 2) =
2x*y + 3y’z — 4z%. Find the components of electric field and the vector electric field at
point (1, 1, 1) in this field.
[Ans. : E. =0, Ey = —11 unit, E, = 13 units, E = —11;7 + 13k unit]
A spherical drop of water has 3 X 1071 C amount of charge residing on it. 500 V
electric potential exists on its surface. Calculate the radius of this drop. If eight such
drops (Having identical charge and radii) combine to form a single drop, calculate the
electric potential on the surface of the new drop. k = 9 x 10° SL
[Ans. : Radius of the first drop = 0.54 cm,

Electric Potential on the new drop = 2000 V]
Q amount of electric charge is present on the surface of a sphere having radius R.

Calculate the total energy of the above system. [Ans. : %%2]
Note : The above example can be calculated in three different ways, (1) By multiplying
the electric charge with the average value of the initial and the final electric potential, (2)
By considering the above system to be a capacitor and calculating the energy of the
capacitor and (3) By considering an electric charge g and taking the integration of the
work done to increase the above charge by an amount dg. Use any one method.

O is the uniform charge density present on the surface of a
semi-sphere of radius R. Derive the formula for the electric
potential at the centre.

Ro
[Ans. : E

Consider A, B and C to be the co-centric shells of metal. Their radii
are a, b and c¢ respectively (@ < b < c). Their surface charge
densities are O, —CG and O respectively. Calculate the electric
potential on the surface of shell A.

[Ans. : %[a - b + c]]

Calculate the equivalent capacitance between points A
and B of the connections of capacitors shown in the 1UF 3UF

A =

figure. [Ans. : % WF]

| | Il

1 I2MF 1 J6I.,LF
(1) A capacitor of 900 pF is charged with the help of 100 V battery. Calculate the
electric potential energy of this capacitor. (2) The above capacitor is disconnected from
the battery and is connected to another identical uncharged capacitor. What will be the

total energy of the system ? [Ans. : (1) 4.5 x 107% 7 (2) 2.25 x 107 J]
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10. €2 Calculate the equivalent capacitance for the connection of

N I I—u capacitors shown in the figure and the electric charge present
e " S on each of the capacitors. The value of each capacitance is
¥ e
Y10 pE
M : Ic P [Ans. : Equivalent capacitance = 13.3 UF Q, = Q, = Q, =
3
o I } : 1.7 X 107 C, Q, = 5.0 x 107 C]
W = 500V
11. ¢ Find the equivalent capacitance between A and B in the
Cs circuit shown in the Figure. C, = C, =1 uF; C, = C, =2 UF.
s | e
) [Ans. : 3 UF]
Cy
12. ! A The area of each plate shown in the figure is A and the
2 P distance between consecutive plates is d. What is the equivalent
3 capacitance between points A and B ?
€,A
4 . B [Ans. : %07]
13. 1 AThe area of each plate shown in the figure is A and the

[Ans. :

W

g A
7

2 e distance between consective plates is d. What is the equivalent
capacitance between points A and B ?
3
ﬁ
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3

3.1 Introduction

CURReNT ELECTRICITY

In the previous two chapters, all electric charges (whether free or bound) were considered to
be stationary (at rest) and we mainly studied the interaction between them. The study of this branch
of electricity is called electrostatics.

In the present chapter, we will bring the charges in motion by providing energy to them. Such
charges in motion constitute an electric current.

Such currents occur naturally in many situations. When there is lightning in the sky, charges flow
from the clouds to the earth through the atmosphere. Flow of charges in lightning is of short duration,
resulting in current called transient current. This flow of charges in lightning is not steady.

In everyday life, we see many devices where charges flow in a steady manner, like water
flowing smoothly in a river. A cell-driven clock, torch and a transistor radio are examples of such
devices.

In the present chapter, we shall study some of the basic laws concerning steady electric current
and the quantities associated with flow of charges like electric current density, drift velocity and
mobility. Moreover, we shall study about resistors, cells and their different connections, Kirchhoff’s
rules for the analysis of network and conversion of electrical energy into heat energy during
conduction of electricity through conductors. Further, we shall get the information about potentiometer
for the measurement of emf of a cell and wheatstone bridge which is used for the measurement
of resistor.

The study of this branch of electricity is called current electricity.

3.2 Electric Current
The flow of electric charges constitutes an electric current.

If net amout of charge Q is flowing through a cross-sectional area of the conductor in time f,
then for a steady flow of charge,

=9 (3.2.1)

is defined as the current flowing through that cross-sectional area.

The amount of charge flowing per unit time across any cross-section of a conductor
held perpendicular to the direction of flow of charge is called current (I).

Electric current (I) is considered as fundamental quantity in SI unit system. The SI unit of

coulomb

electric current is (a) which is equal to .
second

In the above equation (3.2.1), if we take,
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t = 1 second
Q = 1 coulomb
then I = 1 ampere

If 1 coulomb of charge crosses any cross-section of a conductor. Perpendicular to the direction
of current in 1 second, then the current through that cross-section is said to be 1 ampere.

For small currents, milliampere (mA = 10 A) and microampere (LA = 107°A) units are used.

In metallic conductors the current is due to the motion of negatively charged electrons. In
electrolytes, the current is due to the motion of both positive and negative ions moving in opposite
directions. While in semi-conductors, partly the electrons and partly the holes (hole is the deficiency
of electron in the covalent bond) are responsible for the flow of the current.

| (ampere) > Let I ampere current be flowing through any conductor
as shown in figure 3.1. Hence, I coulomb electric charge
is flowing through every cross-sectional area of the
conductor per second.

In other words, the amount of electric charge entering

any cross-section of the conductor from one side in a given

time interval is equal to the amount of electric charge
leaving that cross-section from the other side in the same

Q=1

Figure 3.1 Conservation of Charge

Zl[e]

Q=1

Zl[o]

Q=1

1Z][@)

interval of time. As a result of this Electric charge is never
accumulated at any point in the conductor. The electric charge is neither created nor
destroyed at any point in the conductor. This means that electric charge is conserved.

By convention, the direction of motion of positive charges is taken as the direction of electric
current. It is called conventional current. However, in conductors the current is due to the motion
of negatively charged electrons, so the direction of current is opposite to the electron current.

In some cases, current (rate of flow of charge) varies with time means the flow of charge is
not steady. In this circumstances, let AQ be the net amount of electric charge flowing across any
cross-sectional area of a conductor during the time interval At between times ¢ and (¢ + Af), then
the average electric current flowing during time interval At is given by,

- A
<I>= At
The electric current at time t will be,
_ 1im  AQ _ dQ
= NS0 = 7 (3.2.2)
Illustration 1 : The current through a wire varies with time as I = I, + o, where

[, =10 A and a0 = 4 As™!. Find the charge that flows across a cross-section of the wire in first
10 seconds.

d
Solution : Current I = d_;] = I0 + ot

dg = (I, + owdt
Integrating on both sides,

t=10

j dg = I (I, +ar)dt
t=0
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tz =10
or —

Substituting I0 =10 and o0 = 4,
g = 10(10) + 50(4) = 300 C.

3.3 Electric Current Density

It is possible that the rate of flow of the electric charge through different cross-sectional areas
of the conductor may not be same. Apart from this, the flow of the electric charge may not be
perpendicular to the cross-sectional area of the conductor. In such circumstances, to study the flow
of charge through a cross-section of the conductor at a particular point, a vector quantity known as

electric current density 7 is defined.

To define the current density at a point P, imagine a small cross-section of area Aa through P
perpendicular to the flow of charges as shown in figure 3.2 (a).

(a) (b)

Figure 3.2 Cross—section of a Current Carrying Conductor

If AI be the current through the area Aa, the average current density is,

AL
Aa

The current density at the point P is,

<J> =

j = tm Al dal

Aa—=0Agd ~ da 3.3.1)

The direction of the current density is the same as the direction of the current.
If a current I is uniformly distributed over an area A and is perpendicular to it,

] = (33.2)

>~

Thus, The electric current density at any point is defined as the amount of electric
current flowing per unit cross-section perpendicular to the current at that point. (amount of
electric charge flowing per unit time)

The SI unit of the current density is Am™.

Now let us consider a cross-section Aa which is not perpendicular to the current, (Figure

3.2 (b)) then the component of cross-section in the direction of current Aa cos® should be
considered.

Average current density at point P,

Al
Aacosf
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Where, Al= Current flowing through small area Aa near point P.

and © = angle made by the normal to the cross-section with the direction of the current.

For very small area A_a),

. i Al dl
current density J = , ™ Aocosd = Jacosd (3.3.4)
. dI = JdacosO
Ldl= 7.0 (3.3.5)

Taking the surface integration of equation (3.3.5) over the entire cross—sectional area, we have,
Jar = 7.4

- >
1 = |T-da (3.3.6)
a

If the cross-sectional area is perpendicular to the current and if J is constant over the entire
cross-section then,

I = _[?aﬁ = dea
I =1JA (3.3.7)

The concept of electric current density is very useful in the discussion of the flow of electric
charges.

Hlustration 2 : 0.2 mm diameter copper wire is connected to 5.0 mm diameter iron wire. The
current flows through both the wires. If 8.0 A current flows through the copper wire, then calculate
the following quantities.

(I) The current flowing through the iron wire and
u:I current density in it.
1mim

(2) The current density in the copper wire.

Solution : As per the conservation law of charges, equal amount of time is taken for a given

quantity of charge to enter the copper wire and leave the iron wire.

(1.1, =80=1

e

Let AFe be cross-sectional area of the iron wire and let dFe and T be the diameter and radius.

e _ 80 _ 8.0 N 8.0x4

)= = = = ————————
e A o, d 2 7 B14)5%107)
¢ ] Lexi0”

. = 407 kA/m?

Fe

(2) The current density in the copper wire J, = 8.0 = 2.5 X 10® A/m?

u (3.14)(0.1x107)?
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Ilustration 3 : The current density along the axis of a cylindrical conductor having radius equal

2
to R is given by J =J (1 — _r2 ). Find the current along the length of the conductor. The distance
0 R

from the axis is given by r.

Solution : Consider a ring of thickness dr at a distance r from the axis on the cross-section
perpendicular to the axis of a cylinder.

The current flowing through the ring, (r =R

dl = 7.0 =Jda (" cos® = 1)

a

2
Ldl =1, (l—§J Qmrdr)

The current along the length of the conductor,

p—
Il

=R r2 r=R r2
far= | JO(I—FJ Qnrdr) = 21, !0 (I_F) (r) dr

=0

R 3 2 4 R
I =2nJ (r——z]dr = ano[r——r—}

R*_ R R®

I = 27EJO|:7_4 zjl = 27'EJO|: 4 i|
2
_ R

3.4 Ohm’s Law

Why do we not experience a fatal shock on touching a 6V supply while on touching a 230 V
source, one experiences a fatal shock ?

In these examples for different voltages, the electric current flowing through the body is
different.

In 1828, a German physicist, George Simon Ohm was the first person to give a mathematical
relationship between voltage and current, famously known as Ohm’s law. Ohm experimentally proved
that “Under a definite physical condition, (e.g. constant temperature) the current (I) flowing
through the conductor is directly proportional to the potential difference (V) applied across
its ends.” This statement is called Ohm’s law.

According to Ohm’s law, I o V

% = constant

This constant ratio % is called the resistance (R) of the conductor.

¥ =R (34.1)
OR V = 1R 3.4.2)

. . . It S .
The SI unit of resistance is % which is known as ohm, and is denoted by the symbol 2.

At a given temperature, the resistance R not only depends on the material of the conductor but also
on the dimensions of the conductor.
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The reciprocal of a resistance i.e. % is called the conductance of the material of the given

conductor. Its unit is €' or mho and is symbolised as O .

1T Ohm’s law is not a fundamental law of nature, like the

T, (constant) gravitational law of Newton or the Coulomb’s law for electrical

WoR charges. Ohm’s law gives us the relationship between the
potential difference across the conductor and the current flowing

1. (constant)  through it, under a given situation.

All the metals, some of the insulators and some of the
electrical devices obey the Ohm’s law. Such devices are called

T Ta . .
WSS Ohmic devices.

L
—

0 v The I — V graph for a conductor obeying Ohm’s law at a

Figure 3.3 I =V Characteristics for ¢ongtant temperature will be a straight line. i.e. such relation is
a Conductor

linear.
3.4.1 Limitations of Ohm’s Law
There do exist some materials and devices used in electric circuits where the proportionality of

V and I does not hold. In such devices,
I il

(1) V-I relations are non-linear. e.g. semi-conductor devices
like diode and transistor. (figure 3.4 (a))

i

< w

(a)
~

(mA)

(2) The relation between V and I depends on the sign of
v V. In other words, if I is the current for a certain voltage V,
then reversing the direction of V keeping its magnitude fixed,
does not produce a current of the same magnitude as I in the
opposite direction. This happens in a semi-conductor diode which

we will study in future. (See figure 3.4 (b))

(3) The relation between V and I is not unique. i.e. there
is more than one value of V for the same current I. A graph
of device exhibiting such behaviour (e.g. tunnel diode) is shown

© in figure 3.4 (c).
Figure 3.4 1-V Characteristics of Differ-
ence Devices
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Materials and devices not obeying Ohm’s law are called non-ohmic devices. Such devices are

widely used in electronic circuits.

3.5

Electrical Resistivity and Conductivity
Let us try to understand the dependence of the resistance (R) of a conductor on the dimensions

of the conductor. Consider a conductor having cross—sectional area A and length /. Experimentally

it is found that, at a given temperature, resistance (R) of a conductor is proportional to length of

the conductor (/) and inversely proportional to the cross-sectional area (A).

1
RoclandRocX

. L
.ROLA

R =pL (3.5.1)

Here the constant p is called the resistivity of the material. It depends on the material of the

conductor, temperature and the pressure existing on the given conductor. It does not depend on the

dimensions of the conductor.

The unit of resistivity p is ohm meter (Q2m).
(Information : The resistivity of a material changes at higher pressure, due to the changes in

the composition of the crystals.)

the

can

Using equation (3.5.1), Ohm’s law can be written as,

V = IR

= Il
V= (3.5.2)
vV = Jpl (3.5.3)
where, % = J is the current density.

Further, if E is the magnitude of uniform electric field in the conductor whose length is [, then
potential difference V across its ends is V = El

. El = Jpl

. E=1Jp (3.5.4)

_)
The current density T is a vector quantity and is directed along E. Thus, the above equation

be written in the vector form as,

- -
E =1Jp

OR T =

ool

= OE (3.5.5)

where, 0 = % (reciprocal of resistivity) is called the conductivity of that material.

The unit of ¢ is (Q m)™! or mho m™ (HYm™) or siemen m™' (Sm™).

Note that equation (3.5.5) is the vector form of Ohm’s law.
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3.6 Drift Velocity, Mobility and its Relations with Current

In atoms and molecules, the negatively charged electrons and the positively charged nuclei are
bound to each other due to Coulombian electric force. Bulk matter is made up of many molecules.

We will focus only on solid conductors in which current is carried by the negatively charged free
electrons.

In metallic conductors, the electrons in the outershells are less bound with the nucleus. Due to
thermal energy at room temperature, such valence electrons are liberated from the atom leaving
behind positively charged ions. These ions are arranged in a regular geometric arrangement on the
lattice points. The electrons liberated from the atom are called free electrons and ions are oscillating
about their mean position.

In the absence of electric field, free electrons in a solid conductor move like the molecules in
a gas due to their thermal velocities. During their motion they collide with the ions. The directions
of their velocities after the collision are completely random. At a given time, there is no preferential
direction for the velocities of the electrons. Such random motion of an electron is shown by
continuous line AB in figure 3.5.

Thus on the average, the number of electrons
travelling in any direction will be equal to the number
of electrons travelling in the opposite direction in the
absence of an external electric field. Therefore the net
charge passing through any cross-section of the
4 conductor is zero hence there will be no flow of
Electric Field (F) electric current in the conductor.

#—— current |1}

Illll} Now, an electric field (E) is applied across the conductor

by connecting a battery between two ends of a conductor as

Figure 3.5 Drift Velocity shown in figure 3.5. Due to electric field in the conductor,

the electron will experience a force F = Ee in the direction

opposite to the electric field (towards the positive terminal of battery). The path of the electron will

become AB’ as shown by the dotted lines. This is because of the electron, executing the motion

under the oscillatory electric field of the ions, constantly gets scattered from its path. This gives rise
to the resistance in a conductor.

In the presence of electric field (E), the acceleration of the electron in the direction opposite to

the electric field is a = %. This acceleration of the electron is momentary, since the electrons are

continuously colliding with the ions. (In the real sense, the electrons are scattered in the oscillating
electric field of the ions.) As a result, the electrons are dragged in the direction opposite to the
electric field. The velocity of the electron becomes zero after every such collision with the ions and
after each collision the electron is accelerated once again due to electric field and collide with the
ions. The above process keeps on repeating.

Thus, electron travels from A to B' in the presence of electric field rather than travelling from

A to B in the absence of electric field. The effective displacement of the electron is equal to BB'
in the presence of electric field. The velocity of electron corresponding to this displacement is known
as the drift velocity (v,). In this situation the average number of electrons passing through any
corss-sectional area of the conductor is not zero in the presence of electric field. As a result, there
will be a net flow of charge of current through the conductor.

The average time between two successive collisions of the electron with the ions is
called relaxation time (7).

The drift velocity achieved by the electron during the relaxation time (T) is,

94 - Physics-111



vdzaT

v, = (%)T (3.6.1)
Relation betwen the Drift Velocity and Current Density :

To find the relation between the current density and the —
drift velocity, let us consider a cylindrical conductor of : "
uniform cross-sectional area A. An electric field E exists in '
the conductor when its ends are connected to the battery.

If the drift velocity of the electron is v, then distance |"'_ L= vyar —"'[
travelled by the electron during time Af is [ = v, At Figure 3.6

The volume of the portion of the conductor whose length is v dAt = Al = Av dAt.
If there are n free electrons per unit volume (number density) of the conductor, the number of
free electrons in this portion is = nAv dAt.

All these electrons cross the area A in time Af.

Thus, the charge crossing this area in time Af is, AQ = nAv dAte (3.6.2)
. - AQ _

. Current I = A nAvde (3.6.3)
and current density J = % = nev, (3.6.4)

In general, equation (3.6.4) can be written in the vector from as,
-
7 =y,

For negative charge g, 7 and ‘7(1 will be in opposite direction.

Comparing two equations (3.5.5) and (3.6.4) of current density,
OE = nev P

Substituting the value of v p from equations (3.6.1),

OE = ne (%T)

2
.. 0 = % (3.6.5)
) 1
since, G = 5
1
pP=7q
m
p="1 (3.6.6)

In a metal, number density n is not dependent on temperature to any appreciable extent. The
oscillations of the ions increases with the temperature and become more erratic. As a result, the
relaxation time (T) decreases. Thus, the resistivity of the conductor increases with temperature
according to above formula.
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For insulators and semi-conductors, the relaxation time T and number density 7 of charge carriers

varies with the temperature.

The number density (1) of charge-carriers increases with temperature in semi-conductors. Therefore,

the conductivity of semiconductor increases with temperature i.e. its resistivity (p) decreases.

Hlustration 4 : 3A current is flowing through two identical conducting wires having diameter

equal to 0.2 cm. These conducting wires are then split into three identical conducting wires, each
having 0.1 cm diameter (as shown in the Figure). Calculate the drift velocities in the thicker and the

thinner conductors.

0.2 em 0.1 cm

Solution : The current density in the thicker wire J =

Current density J = nev,

3
_ 1 _
" Ya T e T p0.1x1072)*x7x10%x1.6x107"°

. v, = 85X 10° m s~

= 1(0.1x1072%)%

The electron density = 7 X 10 m™. All the
conductors are made of the same material. The
electric charge on electron is equal to =
16 x 1077 C.

6A total current is flowing through the three indentical conductors (As per Kirchoff’s First Law).

. The current flowing through each of the wires = 2 A

1 2
SV, T e = n(%xlo_z)z><7><1028><1.6><10_19

23 X 10* m s7!

Illustration 5 : A copper wire is stretched to make it 0.1% longer. What is the percentage

change in its resistance ? [Assume that the volume of the wire remains constant.]

Solution : Suppose the length of the wire is [/ and area of cross-section is A.

The resistance of a wire, R = p.%

CR= 20 - ol

Al \'%
aR _ p
dl Vv 21
L dR = 2ldl
Taking ratio of equations (2) and (1),
P
R _ V.ZZdl
R P2
dR _ 5 dl
R T 27

Percentage Change R 100% = 2(#) X 100% = 2 (0.1%)

R

=02 %
Thus, the resistance of the wire increases by 0.2%.

9

)]

(@)
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Note : If the change in the length of the wire is infinitesimally small, then the above method
of differentiation can be used to calculate the change in the resistance. But if the change is very
large, then we have to find the change in resistance according to the change in the length.

3.6.1 Mobility

We have seen that the conductivity of any material is due to the mobile charge-carriers. Mobile
charge carriers in the conductor are free electrons. In the ionized gas they are electrons and positive
ions. Positive and negative both types of ions are the mobile charge carriers in the electrolytes. In
semi-conductors the flow of current is partly due to electrons and partly due to holes. (We shall
study about semi-conductors and holes in the next chapters. At present, we will note that hole will
behave like a positively charged particles.)

Comparing two equations (3.6.4) and (3.5.5) of current density,

nev, = oE

% is the drift velocity of a charge carrier per unit electric field intensity. This quantity is known

as mobility (L) of a charge carrier.

. Mobility [ = % =< (3.6.7)

SI unit of mobility is m?V~'s™!,

From equations (3.6.7)

Conductivity G = nell (3.6.8)
If charge carriers are electrons, then

G, = ney, (3.6.9)
For holes, G, = neu, (3.6.10)

In a semi-conductor, the holes and the electrons both constitute current in the same direction.
The total conductivity,

o = Ge + Gh
G = nel, + ney, (3.6.11)
3.7 Temperature Dependence of Resistivity

The resistivity of a material is found to be dependent on the temperature. Different materials do
not exhibit the same dependence on temperatures. Over a limited range of temperatures, that is not
too large, the relationship between the resistivity of a metallic conductor and temperature is
approximately given by,

Po = Py, [1 + @ ® - 0)] (3.7.1)

where, p, = resistivity at a temperature 0
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peo = resistivity at a proper reference temperature 6.

and o is called the temperature co-efficient of resistivity and its unit is (°C)"' or K.

The above equation can be written in the form of resistance as follows.

Ry =Ry [1 + 0 (0 -6l

(3.7.2)

The resistivity (p) and temperature-coefficient (0t) for some materials are given in Table 3.1.

Table 3.1 : The Value of p and o for various materials

(For information purpose only)

(A) Conductors
Silver 1.6 x 1078 0.0041
Copper 1.7 X 1078 0.0068
Aluminium 27 x 107 0.0043
Tungsten 56 x 1078 0.0045
Iron 10 x 10°® 0.0065
Platinum 11 x 107 0.0039
Mercury 98 x 1078 0.0009
Nichrome ~ 100 x 107® 0.0004
(B) Semi-conductors
Carbon (graphite) 3.5 X 107 — 0.0005
Germanium 0.46 — 0.05
Silicon 2300 —0.07
(C) Insulators
Pure water 25 x 10°
Glass 101 — 10"
Solid rubber 10% — 10
NaCl ~ 10"
Fused Quartz ~ 10
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From the above table, note that for metals, Ol is positive. [0
Therefore the resistivity of the metal increases with

temperature. For metallic conductors, the relation between

=02

p(10~*Qm)

resistivity (p) and temperature is non-linear at lower

temperature (< 50 K) and the graph becomes linear near the

' ! Ls T(K)

&0 Ly 150
room temperature. Finally at very higher temperature the Figure 3.7 Graph of p —» T

. ) ) for a Metal
graph again becomes non-linear, (Figure 3.7).

Some materials like Nichrome (which is an alloy of 1.20
nickel, iron and chromium) have very high value of resistivity,

exhibit a very weak dependence of resistivity with temperature.

P(uQem)
T

(See figure 3.8). The resistivity of manganin (an alloy of

copper, magnesene and nickel) is almost independent of 1.00 1 1 i LST(K)
' 200 400 600 8O0

temperature. Figure 3.8 Graph of p - T for an
Alloy

The resistivity of Nichrome does not become zero even A
at absolute zero temperature (0 K), while the resistivity of a
pure metal becomes almost zero at absolute zero tempera-
ture. Using this fact the purity of the metal can be tested.
As shown in Table 3.1, semi-conductors like carbon,

germanium and silicon have negative values of o. This

means that the resistivity of such materials decreases with i
Figure 3.9 Graph of p » T for a

temperature (as shown in figure 3.9). Semiconductor

3.7.1 Classification of materials on the basis of resistivity

The materials are classified as conductors, semiconductors and insulators depending on their
resistivities.

An ideal conductor has zero resistivity or infinite conductivity, while the ideal insulator has infinite
resistivity (means zero conductivity).

Metals have low resistivities in the range of 107°Qm to 10°® Qm. At the other end are insulators
like ceramic, rubber and plastics having resisitivities 10'® times greater than metals or more.

Semiconductors lie between these two. They have resistivities characteristically decreasing with
a rise in temperature. The resistivities of semiconductors are also affected by presence of small
amount of impurities.

It is generally found that good conductors of electricity like the metals are also good conductors
of heat (superconductors are an exception in this regard), while the bad conductors of electricity like
ceramic, plastic etc. are also found to be bad conductors of heat.

Resistors used in laboratories are of two types.
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(1) Wire Wound Resistors : Wire wound resistors are made by winding the wires of an alloy,
viz., manganin, constantan, nichrome or similarones on a proper base. The resistivity of such materials
does not change appreciably with temperature.

(2) Carbon Resistors : Carbon resistors are widely used in electronic circuits (like radio,
television, amplifier etc.). The carbon resistors have very small dimension and it is very inexpensive.
(Now a days thin film resistors are used very extensively in the electronic circuits.)

To make a carbon resistor, pure graphite mixed with resin is moulded into a cylinder at high
temperature and pressure. Wire leads are attached to two ends of a cylinder and the entire resistor
is enclosed in an insulating jacket (ceramic or plastic). Carbon resistors are available in the range
of 1 Q to 100 MQ.

Colour Code for Carbon Resistors

The value of the carbon resistor can be found from the colour bands, marked on the surface
of the cylinder of carbon resistor. Let us refer the resistor and colour code shown in figure 3.10
in order to understand this.

Colour Code for Resistors (ohm)

Digit (2)
A ™ Multiplier

Digit (1) 4—| I—P Tolerance

— S —

[ COLOUR | ] | [ TOLERANCE
(= l

-—

BLACK 0 0 x 10°0Q2 BROWN + 1%

BROWN I 1 % 10! RED + 2%,

RED 2 2 x 107 R |ORENGE + 3%

ORENGE 3 3 x 10° -—| YELLOW + qof

YELLOW 4 4 x 10* GOLD + 5%

GREEN 5 5 x 10° SILVER + 10%
BLUE 6 6 x 10° NO COLOUR | + 20%
VIOLET 7 7 x 10

GRAY 8 x 10"

WHITE 9 9 x 107

GOLD X "Ti

SILVER x 1072

Figure 3.10

Colour of the first band on the resistor shows its value in “tens”. The colour of the second
band shows its value in ‘“units”. The digits for different colours are shown in the colourcode.
(Figure 3.10)

The third band implies that the number formed by the first and second digit is to be multiplied
by 10". The multiplier 10" for different colours is given in the colourcode. The fourth colour band
shows the possible deviation (tolerance) in the value of resistor.
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Let us take the example of the resistor shown in figure 3.10. The first band on the resistor is
yellow and the digit for this colour is 4. The second band is violet and its corresponding digit is 7.
The number formed due to combination of this two digits is 47.

The third colourband is orange, which shows the multiplier 10°. 47 multiplied by 10* gives the
value of the resistance = 47 X 10° = 47 KQ. The last colourband on the resistor is golden, which
indicates that the value of the resistor calculated above can have a variation of 5%. Thus, the value
of this resistor is (47 KQ + 5%)

Dear students, give the colourcode for the resistor 1K€ + 10% using the colourcode given in
Figure 3.10.

3.7.2 Super Conductivity

In 1911, Dutch physicist Kamerlingh Onnes experimentally discovered that the resistivity of
mercury absolutely disappears at temperatures below about 4.2 K. As per his observation at
4.3 K temperature, the resistance of mercury is about 0.084€2 and at 3 K temperature it becomes

3 X 10°Q (Which is about 10°h part of the resistance at 0°C). This showed that,

“The resistance of certain materials reduces to almost zero, when its temperature is
lowered below a certain definite temperature (which is known as critical temperature T ).
The material in this state is known as superconductor and this phenomenon is known as
superconductivity.”

Superconductivity is a specific state of the material. Most of the metals and alloys can achieve
the state of superconductivity. Some of the semi-conductors like Si, Ge, Se and Te exhibit the state
of suprconductivity under high pressure and low temperatures.

The current flowing through a super-conductor can be sustained over a long interval of time. The
reason is that in an ordinary conductor the electrical energy is dissipated as heat energy due to the
resistance offered by the conductor, while in super-conductor there will be no loss of electrical
energy since the resistance of super-conductor is almost zero.

From the above discussion it seems that using superconductors, the problem of energy loss during
the transmission of electrical energy can be solved. One of the important fact we have ignored is
that the temperature of the material should be lowered to its critical temperature. Liquid helium and
liquid nitrogen are used to achieve the temperature of the material below its critical temperature T.
This situation can be best described by the proverb ‘Penny wise pound foolish.’

In fact, the best of the normal conductors have higher critical temperature (but very much lower
than room temperature) than oxide alloys. It shows that, compared to normal conductors, insulators
like ceramic can easily achieve the state of superconductivity. Thus, superconductivity is a specific
state of a material.

According to latest research, the critical temperature (T_.) of the compound Hg—Ba—Ca—Cu—O
can be raised upto 164K.

Such superconductors are known as high temperature superconductors (HTS). HTS has applica-
tions in the areas of thin film devices, electric transmission over long distances, levitating trains
(maglev trains) which can achieve speed of 550 km/h.

Ilustration 6 : The resistance of the platinum wire of a platinum resistance thermom-
eter at the icepoint is 50 and at steampoint is 5.23Q2. When the thermometer is inserted
in a hot bath, the resistance of the platinum wire is 5.795Q. Calculate the temperature of
the bath.
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Solution : R, = 5Q2, R, = 5.23Q2 and R, = 5.795Q
From equation, R, = R, [1 + o (6 — 6))]
o
R, = Rl + af] (" 6,= 0)

“ Ry — R, = Rooce

For steam,R  — R, = R (100) (1)
For heat bath, R, — R) = R o 0 2)
Dividing equation (2) by (1),

Re"Ry _ 0
Rip0—Ry 100
R,—-R
0 "Ry
= 55— X 100
Rloo_Ro
5.795-5

= S3-5 X< 100

=0 = 345.65 °C

[lustration 7 : Two materials have the value of o and o, as 6 X 1074°C)™! and
-5 x 107%°C)™! respectively. The resistivity of the first material p,, = 2 X 108, A new material
is made by combining the above two materials. The resisitivity does not change with temperature.
What should be the resistivity p,, of the second material ? Considering the reference temperature as
20°C assume that the resistivity of the new material is equal to the sum of the resistivity of its

component materials.
Solution :

Here the reference temperature is 20 °C.
Resistivity of a material at temperature 0 is,

Po = Py [1 + ® — 20)]

dpy
a0~ Pa®

: dpy | _
For material 1, | 75 | = (P,), O,

()
For material 2, | g = (Py), O,

The resistivity of the mixture Py = (pe)l + (pe)2 does not change with temperature. Therefore,

#)- (2] 3] -
3)- {3

Py O = —(Py), O
_ (P

. (p20)2 = o,

—2x107%)6x107h
—(5x107h

(Py), =24 x10° Q m
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Illustration 8 : The tungsten filament of bulb has resistance equal to 18 € at 20° C temperature.
0.185 A of current flows, when 30 V is connected to it. If o0 = 4.5 X 107 K! for a tungsten, then
find the temperature of the filament.

Solution : As per Ohm’s Law,

vV .o _V _ 300 _
I=x ~Ry=7 = g5 = 162Q

When the bulb is ON its resistance is 162 €,
Now, R, = R, [l + « 0 - 90)]
o
. 162 = 18[1 + 4.5 x 107 (0 — 293)]

_9-1
45%107° 0 - 293
. 0 = 2070.7 K

3.8 Electromotive Force and Terminal Voltage of a Cell

We have seen that current is constituted due to the motion of a charged particles. In order to
bring them in motion, force must be exerted on them, in other words energy has to be supplied to
the charged particles. The device, which serves the above purpose is called the source of
electromotive force i.e. “emf’. There are many ways in which force can be exerted on the charge.
For example, the force exerted on the charge in an electric cell is due to the chemical processes,
The force can be exerted on the charge due to the varying magnetic field and by temperature
difference. All the above mentioned devices are the source of emf. A battery (cell) is also a source
of emf. What does this emf mean ? We shall consider the example of an electric cell in order to
understand the cell.

Figure 3.11 shows a schematic diagram of a battery.

F F
There are positive and negative charges present in the 1—_;_::" o—» (_:_)

chemical of a battery. Due to certain chemical reactions

occurring in the battery, force is exerted on these charges.
Such a force is called chemical force or non-electrical force % F, F, =

F,. This force (F,) drives positive charges towards one

terminal (i.e. positive terminal) A and drives the negative Figure 3.11 Schematic diagram of a

. . . . battery
charges towards the other terminal (i.e. negative terminal) B. :

As the positive and negative charges build up on the positive and negative terminals A and B
respectively, a potential difference (or electric field E) is set up between them, which keep on

increasing gradually. As a result of this, electric force I?; (= qE) is exerted on the charge ¢ in

_)
the direction opposite to Fn. In the steady state, the charges stop accumulating further at the

terminals A and B and Fn =F.

e

The work done by the non-electrical force in taking a unit positive charge from a negative

5

terminal to the positive terminal is equal to W = _[Fn dl , where the line intergral is from negative
line

to positive terminal. As per the definition of an emf, this work done is equivalent to the emf.

Therefore the definition of emf can be given as follows.
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When unit positive charge is driven from negative to positive terminal due to non-
electrical forces, the energy gained by the charge (or work done by the non-electrical

joule

forces) is called an emf (€) of a battery. The unit of emf is ————
coulomb

= volt. (in the memory

of great scientist Volta) Remember that emf is not a force but energy per unit charge.

In the steady state of a battery (when F, = F),

@ @ the electric charge in the battery does not execute any
motion i.e. no current is flowing through the battery.

& Py (I = 0). In this condition, battery is said to be in open
circuit condition.
Resistive Wire

AAMAN Let us consider a wire of resistance R connected

across the two terminals of a battery as shown in figure

Figure 3.12 Terminal Voltage of a 3.12. The electric field is thus established in the wire. As

Battery a result, positive charges which are at higher potential will

move towards the negative terminal of a battery through

the wire and constitute an electric current. The question then arises as to why didn’t the positive

charges move towards the negative terminal (inside the battery) rather than the longer route of the

wire ? The reason for this is the non-electrical forces which oppose the motion of positive charges
towards the negative terminal of the battery inside the battery.

The energy of the positive charge is consumed against the resistance of the wire. As it reaches
the negative terminal, its energy becomes zero. This happens at every rotation of its motion.

During the flow of current, the positive charge is moving from negative terminal to the positive
terminal because of non-electrical forces. During the motion, the charge has to pass through the
chemical materials of a battery. In other words battery offers a resistance to the charge which is
called the internal resistance (r) of a battery.

Due to this internal resistance (r), when a unit positive charge reaches to positive terminal, some
part of its energy (which is gained due to the work done by the non-electrical forces.) is consumed
against the internal resistance. If the current through the battery is I, then the energy consumed per
unit charge against internal resistance = Ir.

Therefore, the energy of a unit positive charge at the positive terminal of battery is less by an
amount Ir compared to the energy (€) in the open circuit condition. Thus, the net energy per unit
charge will be (¢ — Ir). Thus, during the flow of current this energy is called the potential difference
between two terminals of a battery or the terminal voltage (V) of a battery.

. V=¢-1Ir

3.8.1 Secondary Cell : Lead Accumulator

Electrochemical cells are of two types.

(1) Primary Cell : The cells which get discharged only are called primary cells. e.g. Voltaic
cell. Primary cells cannot be recharged.

(2) Secondary Cell : The cells which can be restored to original condition by reversing the
chemical processes (i.e. by recharging) are called secondary cells.

In a secondary cell, one can pass current in both directions.

(i) When (conventional) current leaves the cell at the positive terminal and enters the cell at the
negative terminal, the cell is said to be discharging. This is the normal working of the cell during
which chemical energy is converted into electrical energy.
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(ii) If the cell is connected to some other source of larger emf, current may enter the cell at
the positive terminal and leave it at the negative terminal. The electrical energy is then converted
into chemical energy and the cell gets charged.

The most commonly used secondary cell is a lead accumulator.

Lead Accumulator : A lead accumulator consists of electrodes made of PbO, and of Pb
immersed in an electrolyte of dilute sulphuric acid (H,SO,). PbO, acts as the positive electrode and
Pb as the negative electrode.

When the cell is in use, (i.e. when the cell is discharging) SO4‘2 ions move towards the Pb
electrode, give up the negative charge and form PbSO, there. The H' ions move to the PbO,
electrode, give up the positive charge and reduce PbO, to PbO.

The PbO so formed reacts with the H,SO, to form PbSO, and water.
Thus, PbSO, is formed at both the electrodes and the concentration of the electrolyte decreases.

The concentration of the electrolyte can be measured by a device called hydrometer. When the
cell is fully charged, the specific gravity of an electrolyte is 1.285 and emf of a cell is about 2.1
volt. In the discharged condition, the specific gravity falls to 1.15 and emf may fall to 1.8 V.

v

Charging : To charge a secondary cell of emf €, direct ~I; p

current (d.c.) is passed through the cell as shown in figure D.C. Supply

3.13. The positive terminal of the cell is connected to positive |+ R

end of a d.c. source and the negative terminal is connected

to negative of d.c. supply (opposing condition) for the charging i

of a cell. (Here V > E) PbO Pb
2

Due to the chemical reactions occurring in the cell

during charging process, PbSO, deposited at the two electrodes =3

is dissolved. Pb is deposited at the negative electrode and A

PbO, at the positive electrode, simultaneously H SO, is also
formed. This restores the capacity of the cell to provide Figure 3.13 Charging of a Second-
current. ary Cell

Here, the elecrical energy VIf consumed by a d.c. source provides €It energy for the charging
of a cell and I’Rt + I’rt energy dissipated in the external (series) resistance (R) and internal

resistance (r) of a cell.
. VIt = €It + IRt + I’rt (3.8.2)

“V=eg+IR +7r

V-¢
R+r

o1 = (3.8.3)

Above equation gives the charging current. Here, the resistance R is connected to control the
current.

Ilustration 9 : 6 batteries, each of 2.0 volts are connected in series so that they are helping
each other. Internal resistance of each is 0.5 €. They are being charged using a direct voltage
supply of 110 volts. To control the current, a resistance of 46 €. is used in the series. Obtain (1)
power drawn from the supply, and (2) power dissipated as heat. Why are the two different ?

Solution : V =€ + Ir + IR  gives

V=6g+61Ir+ IR
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V=110V

e =20V
r =050 Q
R = 46 Q
Now, I = ;/r+6l§ - 6><1(1).050£-246 - Z_g =24
power drawn from the supply,
W=V XI=110 X 2 =220 W
power dissipated as heat = 61, + I’R
= I*(6r + R)
=4 X (6 X 0.50 + 46)
=4 X (3 + 46)
= 196 W

Difference = (220 — 196) W = 24 W. This power is used to charge the batteries.

3.9 Kirchoff’s Rules

In different electronic circuits, components like resistors, inductors, capacitors and batteries are
connected with each other in a complicated way. Such circuits cannot be considered as a simple
series or parallel connections. Generally, such complicated circuits are known as network.

Ohm’s law alone is not sufficient to analyze a network. There are several rules for the analysis
of a network. Kirchoff’s two rules are amongst them.

Let us try to understand the two terms concerning circuits before the discussion of Kirchoff’s
rules.

50 12V Junction or Branch Point : The point in a

C w [ { [ network at which more than two conductors (minimum
| three) meet is called a junction or a branch point. (You

I 1060 (1 will be aware that how many railway lines make a
Be—<—" AWM 4 A junction.) In figure 3.14 three conductors are meeting

—_

at points A and B. Therefore, points A and B are
2 called junction or branch points.

2062
E _/W_l —F Loop : A closed circuit formed by conductors is
6V known as loop. As shown in figure 3.14, CDABC,
Figure 3.14 Network AFEBA and CDAFEBC are some of the closed path
of conductors known as loop.

In the analysis of a network, unknown quantities like V, I, R ..... in a given circuit can be
determined from the known quantities.

Kirchhoff’s Rules :

Kirchoff’s First Rule : Kirchoff’s first rule is the
consequence of the law of conservation of charge.

Consider junction O of a network as shown in figure
3.15. The currents meeting at the junction point O are

4

represented as L, L, ... , L. Their directions are represented
by arrows in the Figure.

Let Ql, Qz’ ........ , Q5 be electrical charges flowing through
the cross-sectional area of the respective conductor in time

Figure 3.15 interval 7 which constitutes current I, L, ......
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Hence, I = - Q =1t
_ % _
I = - = Q, =Lt
_ % _
L = - = Q, = Lt

It is evident from the Figure that the total electric charge entering the junction is Q, + Q,, while
Q, + Q, + Q, amount of electric charge is leaving the junction in the same interval of time.
As per the law of conservation of charge,

Q +Q =0Q +Q, +Q (3.9.1)
A WARES FAES RS A O

CL L+ (L) + (D) + (1) =0 (39.2)
~. At the junction, X I =0 (3.9.3)

Thus, “The algebraic sum of all the electric currents meeting at the junctions is zero.”
This statement is known as Kirchoff’s first rule.

In the above sum I and I, currents are positive while [, I, and I, are negative. Thus the
electric currents entering the junction are considered as positive and the currents leaving the junction
are considered as negative. One can also consider an opposite convention to arrive at the same
result.

Kirchoff’s Second Rule : Using law of conservation of
energy and the concept of electric potential any closed circuit
can be analyzed. Kirchoff’s second rule is the essence of the
above mentioned concepts. Let us consider a closed path
ABCDEA as shown in figure 3.16.

Here, resistors R, R,, R;, R, R, and batteris of emf’s
€ and g form a closed loop ABCDEA. If the internal

resistance of a battery is ignored, the rise in the -electric
potential while going from negative to positive terminal of a cell

is equal to the emf (€) of a battery. The potential difference
across the ends of a resistor is equal to the product of the
resistor and the current flowing through it (V = IR). Figure 3.16

The electric potential at any point in a steady circuit does not change with time.
If V, is the electric potential at point A, and if we measure the changes in the electric potential
while moving in clockwise or anticlockwise direction in a closed circuit and come back to point
A, the potential V, should remain unchaged. This is called the singlevaluedness of the electric
potential. In fact, the singlevaluedness of the electric potential is a consequence of the law of
conservation of energy.

The electric potential drops by an amount I R, when we move in a clockwise direction from
A through the resistor R,. Here, the direction of current is arbitrarily taken from A to B i.e. current
flows through resistor R, from a point of higher potential (A) to lower potential. Hence there will
be a drop in potential equal to I R, as we move from A to B. There is a rise in the potential €
while going from the negative terminal to the positive terminal of a battery of emf €. The potential
rises by LR, when we go from B to C through resistor R,. As the direction of current is assumed
from C to B, the electric potential of point C is higher than B. Therefore, potential rises by an
amount LR, while going from B to C.
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In a similar way, there is a decrease in potential equal to € when we go from positive to
negative terminal of a battery of emf €. There is a potential drop IR, while passing through R.,
rise in potential IR, through R, and rise in potential LR, through R..

Taking the algebraic sum of all these changes, the potential at point A should remain V,.

~V, - IR +¢ + 1R, —¢ — LR + IR + LR =V

- IR +¢ + IR, — ¢ — LR, + R + LR, =0 i (3.9.4)
Thus, the algebraic sum of all the changes in potential around any closed loop is zero.

s -IR) + LR, + (-LLR) + LR, + LR, = (=€) + g, (3.9.5)
. 2IR = X¢ (3.9.6)

This equation suggests that “for any closed loop the algebraic sum of the products of
resistances and the respective currents flowing through them is equal to the algebraic sum
of the emf’s applied along the loop.” This statement is known as Kirchhoff’s second rule.

Sign convention for applying Kirchoff’s rules :

The following sign convention has to be followed in using equation (3.9.5).

(1) If our journey through the resistor is in the direction of flow of current which is arbitrarily
chosen, IR should be considered negative and if the direction of journey and the direction of current
is opposite to each other IR should be considered as positive.

(2) The emf of a battery should be considered negative while moving from negative terminal of
a battery to the positive terminal (while writing on the right hand side of the equation.) The emf of
a battery is taken as positive while moving from positive to negative terminal of the battery.

The direction of the electric current can be arbitrarily chosen while using Kirchoff’s rules to
analyze any network. We shall get negative value of the current if the direction of current which
is arbitrarily chosen is opposite to the actual direction of current.

Illustration 10 : Calculate the current flowing through the resistor R in the given circuit.

R, =10 Q, R, =20 Q and R, = 30 €. The potentials of the
v, o6V points 1, 2 and 3 are respectively, V., = 10 V, V, = 6 V and

[ §*]

V, =5 V. Calculate the potential at the junction.

Solution : O is the junction point in the above circuit. The
potential at point 1 is higher than the potential existing at point

Vv oy R I 10£1

|
2 and 3. Hence, the direction of the flow of the current is from
point 1 to O, from O to 2 and from O to point 3. The Figure
indicates the electric current and their direction.

Now for the 102 path, we have,
V, — IR, = LR, =V,
<o 10 — 10l — 20L, = 6

w10l + 20L, = 4 (N
For the 103 path, we have,

10I + 30 (I - L) =5

. 400 — 30L, = 5 )
Solving equation (1) and (2), we have,
I =02A
Let V, be the potential at point O, then

10 = V, = IR,

10 =V, =2
.V, =8V
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Ilustration 11 : Calculate the potential difference between the plates A and B of the capacitor
in the adjacent circuit.

Solution : The distributions of the current are shown in %m!h“ ﬁ: f
figure.

Applying Kirchhoff’s Second Law to the closed loop abcdea, IV
we have

- 101 -200—-1)+4=0 .:mz 1081

301 -21 =4 (1)

For the cdhge loop, I |r 4V

200 = I) + 1 =30 =0 o8 Ty & ASB ..

" 200 — 501, = —1 2 e Y

Solving equation (1) and (2), we have, |

= 0.1 A and I = 02 A. ¥ T

The p.d. between the two plates of the capacitor is equal ¢ d c
to the p.d. between ¢ and h point. Let V_ be the potential at 23 100 I
point ¢ and let V, be the potential at point 4. For the path cdh, g | l i b
we have 4V I

V.- 10 x02+ 1=V,
V.-V, =2-1=1
. The potential difference between the two capacitors = 1 V
- Illustration 12 : Calculate the poten‘tial difference between PR T s B :|.1F i

points A and B as well as between, points C and B under a 1} J_ - j_ 1}
steady condition of the circuit shown in the figure. 3uF iuF

Solution : e (or a or b) and d are the two ends of the _I: Hlllle ..s:
capacitor 3 UF. ‘k and g (or h or f) are the two ends of the ooy EEM!
capacitor 1 UF.

.-f’—'\'WVW—{nm |

The equivalent circuit of the above circuit can be given as

under : 3 |
. . h.a.e ghf
There are two 3 WF capacitors connected in parallel.
.. Their equivalent capacitors = 6 UF 3uF I UF
11
In a similar way equivalent capacitors of two 1 UF capacitors llull' :
=2 uE oy 2

Aﬂ—-’V;ﬁ\éVW—I El i_“L(

Since the circuit is in the steady state, no current flows through 20 € and 10 € resistances.

The above situation is represented in the figure below.

It seems as if these resistors are not connected in the circuit. In this situation, the voltage of the
battery (100 V) is applied between point @ and h. The 6 UF and 2 UF capacitors are connected
in a series combination between the two ends of the battery.
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S HF &M If the electrical charge on 6 UF and 2 UF capacitors is

11 y
1= > =
+ CHT I equal to g, then
+ - V,+V =V
I
uf L
=100 4 4 _ 4 9 _
e EEIHL: C, + c, Vv, c T3 = 100
S AAAAAN, I| | ;
A 2041 by C 100x12
sog = 10012 _ 50

8

Now, the potential difference between points A and B are equal to voltage developed across
6 WF capacitors,

wvoo= 10 _hsy

AB 6
Now, the voltage between B and C
Ve = 100 — 25 =75V
Hlustration 13 : A cube is made by connecting 12 wires of equal resistance R. Find the
equivalent resistance between any two of its diagonally opposite points.
Solution : Let I be the current through the cell.

Since the paths AB, AD and AA' are symmetrical with

# -

B] 3 C'l m
g > > respect to resistors, current through each of them is same
4]
. (i.e. %). At the junctions B, D and A' the incoming current
A = 1 B —2 M
H, 6 % % splits equally into the two outgoing branches, the current
: :
1
5 o - Vi through each branch is %, as shown in Figure. At the
D 1
i 2 1 junctions C, B' and D' these currents reunite and the
_1 ¥
> B currents along CC', B'C' and D’C’ are % each. These
F
I | Ie three currents reunite at the junction C' and the total current
]
L I N at junction C' is I again.
Applying Kirchoff’s second rule to the closed loop AA'D'C'MNLA,
I I I, _
- 3R - ¢R - 3R =-¢
e = 2R (1)

Let the equivalent resistance between two diagonally opposite points A and C' be R' this means

that if R' is connected across the same battery (of emf €) in place of the given network, the
current I should remain same.

From the equivalent circuit shown in Figure,

A AMMA— e = IR' )

L ¥ Comparing equation (1) and (2),
|
T 2R = IR'
| I
I' ' _ 5
€ R = ER
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Illustration 14 : A cube is constructed by connecting 12 wires of equal resistance as shown
in Figure. Find the equivalent resistance between the points A and B shown in the Figure. The
resistance of each wire is of r . A and B are the midpoints of the sides PQ and VU respectively.

Solution : Note that with reference to the line joining A Q i

L R
and B, the pairs AP and UB, AQ and VB, PW and RU, QT 1

=

]
]
and SV, WV and QR are symmetric branches. Hence current - E 1
flowing through each of this symmetric pair must be same. e.g. i o > 5 i
I S P
if the current flowing through PW is 5, the same current k I,'----B'w———- u
3 4
M F
I i B
(i.e. Z) will flow through RU. With this consideration the . 4 5 1 ,",'
i &
proportional currents through the various circuit branches are as |€
L N

assigned their values in figure. M
Points W and T being symmetric about A are at the same potential, so no current will flow
through WT and similarly also through SR.
Appyling Kirchoff’s second rule to the closed loop APWVBNMA, taking r as the resistance of
each wire.

- ale) - ar- a3l = e

~ IR =¢ (D
If the equivalent resistance is r',

then Ir' = € (2)

Comparing equations (1) and (2),

1
ro=r

3.10 Series and Parallel Connections of Resistors

Resistors can be connected in series or parallel or a mixed combination of both the types
between any two points. You have studied the series and parallel connections of resistors in
Standard—X. Here we will make note of their results.

Series Combination of Resistors

Resistors are said to be connected in series between any two points, if the same current is
flowing through each resistor or in other words, there is only one path available for the flow of
current. v K

Figure 3.17 shows the series connection of 7 resistors
R, R,, R, ... » R between two points A and B. 1

If the equivalent resistance of the series connection is
RS, then,

IR Ry PRy R
n
R =R +R, +R + ... +R = ZRi (3.10.1) Figure 3.17 Series Connection of
N n .
=l Resistors

Thus, the equivalent resistance of the series combination of the resistors is always greater than
the greatest value of the resistors connected in series.

If n identical resistors each of value R are connected in series, the equivalent
resistance is,

R =R+R+R+ ... n times = nR (3.10.2)
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Parallel Connection of Resistors : The resistors are said to be connected in parallel between
two points if there are more than one path available for the flow of current and potential difference

(V) across each o]{ them is same.
Iy i

In figure 3.18, n resistors R, R, R, ... s Rn are
connected in parallel between two points A and B.
L e T If the equivalent resistance of this parallel connection
is RP, then
L 4 n
LA S s L BT i i
R, =R, t R, T R, T - R, = &R
(3.10.3)
} I {-) Thus, the equivalent resistance of a parallel combination
. kg K . of resistors is always smaller than the smallest value of
Figure 3.18 Parallel Connection of . .
. resistors connected in parallel.
Resistors
If n identical resistors having resistance R are connected in parallel, the equivalent resistance is,
2 1 1 1 . _ n
RP—R+R+R+ ....... ntlmes—R
. - R
- R, =3 (3.104)

Illustration 15 : As shown in the figure (a), some current flows through resistors R, R, and
R, resistors. R, = 10 €, R, = 20 € and R, = 30 € and the battery voltage is equal to 10 V.

Solution : Let us start from point A in order to

B D . . N . .

AN — W ——AAAAN obtain the equivalent circuit of the above given circuit.
A Ry B2 C Ry Here one end of the resistor Rl is connected to point A.

The common end of resistor R, and R, (point C) is

connected to point A.
The circuit (b) resembles partially the above

circuit.
Similarly, the other end of the resistor R, and the

common end of resistor R, and R, are connected to
point B.
The entire circuit can be represented by
figure (c).
Hence, we have a situation in which 3 resistors are
connected in parallel as shown in figure (c).

The voltage developed across the two ends of
each resistor will be equal to 10 V.

.. Therefore, the current flowing through R, I, = §|

= % = 1A, similarly the current flowing through R,

_ N _ 10 _ )
| L = R, = 20 — 0.5A and current flowing through R,
1
Mov Yy _ 10
© L= R, = 3 = 033 A

112 - Physics-111



IMlustration 16 : An electric current of 5A is divided in three branches forming a parallel
combination. The lengths of the wires in the three branches are in the proportion 2 : 3 : 4 and their
radii are in the proportion 3 : 4 : 5. Find the currents in each branch if the wires are of the same
material.

Solution : Let the lengths of the wires be 2/, 3/ and 4/ and their radii be 3r, 4r and 5r
respectively. Their respective resistances are,

21
R = Pl
_ 31
Ry = P ar?
4
and R; = p. 1)

) . 2.3 .4
or,Rl.Rz.R3—9.16.25

The currents must be in the inverse proportion of resistances.

. 9 .16 . 25
| PR VO =313 1
=54 :64 :75
. Current in the first branch Il = 5;19);5 =140 A
Current in the second branch I2 = 6149X35 = 1.66 A
Current in the third branch I, = X3 = 194 A
3.11 Series and Parallel Connections of Cells

Like resistors, cells can also be connected in series, A

€ €
1 I 2 I B
parallel and combination of both between two points. | | @ € || @ €
r I

Cells in Series

Suppose two cells having emfs €, and €, and internal

resistances 1, and r, are connected in series between two “—-)-———Wﬂfv"r—{-

points A and B as shown in figure 3.19. An external l R
resistance R is also connected across the connection. Figure 3.19 Seéuii Connections of
ells

Applying Kirchhoff’s second rule for the closed loop ABCDA,
—€ +1Ir,—¢ +1Ir, + IR =0

.'.Irl+Ir2+IR=8 + €

1 2

IR+ (r, + 1)l = ¢ + ¢

€
& + € eq

I = R+(7i+r2) = R+req (3111)

where, 1 is the current through the resistor R.
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Thus, the series combination of two cells acts as a single cell of emf €, =& *t§, and internal

resistance Ty =1 T 1y In this sense €, is an equivalent emf and Ty is the equivalent internal
resistance of the series connection of cells.

If the polarity of one of the cells is reversed, the

€ . . . .
'L 1 @ J equivalent emf will be |€, — €&, but the equivalent internal
gati I B resistance will remain r, + 7,.
- . Cells in Parallel :
2 . .
< |—E—(— As shown in figure 3.20, suppose two cells of emfs
3 ] |

i
-

g, and g, and internal resistances T and r, are connected

in parallel between two points A and B. The currents are

I it also shown in the Figure.
Figure 3.20 Parallel Connection of We are interested in finding the current flowing through
Cells

external resistor R.

At junction A, according to Kirchhoff’s first rule,
=1 +1 (3.11.2)
Applying Kirchhoff’s second rule to the closed loop ADRCBE A,
-IR — Lr,+€& =0
S IR+ Irp =g
g, —IR
L= (3.11.3)

! 4l

Similarly for the closed loop ADRCBEZA, we have

€, —IR
12 = 7 (3.11.4)

Substituting the values of L and L from equations (3.11.3) and (3.11.4) in equation (3.11.2), we
have,

g, —IR e, —IR
1 2

r h E
1.1 & )
_+_ — —_— ——
I+IR[r] rzj_ﬁ+rz
hon gl )
g &
. __h n
1= —1+E+E (3.11.5)
h n
€., +ELT;
or, [ = mA—=! (3.11.6)

R(rl + r2) +nr,
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Dividing numerator and denominator of equation (3.11.6) by (r, + r,),

(&1, +8,17)
[ = (n+1n) _ Feq
L1 Rt (3.11.7)
(i +1)

Thus, the parallel combination of cells acts as a single cell whose emf is,

g1 &0
€, = —rl+r2 (3.11.8)
and internal resistance is,
__hh
Toy = PRy (3.11.9)
11,1 (from equation 3.11.9) (3.11.10)
req h 63
Taking the ratio of equations (3.11.8) and (3.11.9), we get
€ €
Zq _ 2o B (3.11.11)
req g h
If emf’s of two cells are € = ¢ =& and internal resistances are r,=1, =1, then,
_ _r
eeq = € and Tog = 7>

In figure 3.20, we had joined the positive terminals together (at point A) and similarly the two
negative ones (at point B), so that the currents I, and I, flow out of positive terminals. If the
negative terminal of the second is connected to positive terminal of the first, equations (3.11.10) and
(3.11.11) would still be valid with €, — —€,

If there are n cells of emf €, &, .., and of internal resistances Fio Ty e Ty respectively
connected in parallel, the combination is equivalent to a single cell of emf €, and internal resistance
To such that

L 1,1, 41 (3.11.12)

req n T, r,

€ € € €

24 = 1 4 2 4 . + L (3.11.13)

req " b3 -

ii
i=1 G
and I = n 3.11.14
1+RY L ( )
n £
=11
If n cells of emf €, €, .., § and internal resistances Ty, Ty vy I, are connected in series

to form a row and m such rows are connected in parallel, the current in such connection (which
is called mixed connection) is given by following formula.

n

%
+1L
m

p—
I

i (3.11.15)

R = external resistance connected across the mixed connection
m = number of rows
n = number of cells in a row.
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Illustration 17 : In the circuit shown in Figure, g = 3V, g, = 2V, g = 1V and R = T

r, =71, = 1€2.. Find the current through each branch and potential difference between the points A
and B.
Solution : Let I, I, and I, be the currents through the resistors r|, r, and r, respectively as
indicated in figure. Using Kirchhoff’s second rule to loops abcda and abcdefa, we have,
i, —¢ +¢& + L, = o . (1)
and Lr,— ¢ +¢&+ Lr, = o . 2)
From equation (1) and (2),
& - Irn=¢+Lr,=¢+Lr, .. 3)
Appyling Kirchhoft’s first rule to junction a, we have
L=+ . “4)
Using equation (4) in (3), we get
g — (I, + r,=¢ + Lr,
or, 213 +L=2 5)
Also €, + Lir, = & + Lr,
o, L, -L,=1 (6)
From equations (4), (5) and (6),
[ =1A, L, =0 A and [ = 1A
Potential difference between A and B
= Potential difference between a and d
=¢€ — I
=3 -1x1
= 2V
3.12 Wheatstone Bridge
In 1843, Charles Wheatstone developed a circuit to measure unknown resistor with reference to
standard known resistance. This circuit is known as
Wheatstone bridge. Wheatstone bridge network is shown in

galvanometer is connected between B (common point

R, and R)) and D (common point of R, and R)

figure 3.21. The bridge has four resistor arms R, R), R, and
R, connected to form a closed loop. The source of emf
(battery) is connected between A (common point of R, and

Rs) and C (common point of R, and R,) and sensitive

of

Three resistors out of the four are known and the fourth
one is unknown. The three resistors are chosen in such a
way that galvanometer shows zero deflection. In this condition
the potential at point B and D are same hence there will be

| 1 A
1 'f \‘K‘r no flow of current through the galvanometer. This condition
Figure 3.21 Wheatstone Bridge of Wheatstone bridge is said to be balanced condition.
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Applying Kirchhoff’s second rule to loop ABDA in a balanced condition,
-IR, + LR, =0
. R, = LR, (3.12.1)
Similarly, applying Kirchhoff’s second rule to the loop BCDB,
-IR, + LR, =0
~ IR, = LR, (3.12.2)
Dividing equation (3.12.1) by equation (3.12.2) we have,
R = Rs (3.12.3)
R, R,

By knowing three resistors, the fourth unknown resistance can be found.

Meterbridge

Meterbridge is the simplest practical device based
on the principle of Wheatstone bridge. It is used to
measure an unknown resistance experimentally. The

Meterbridge used in the laboratory is shown in
figure 3.22.

Meterbridge consists of a constantan wire of length
1 m and of uniform cross sectional area which is used

I

. . S El :

in place of resistors R, and R,. This wire is stretched K e
Figure 3.22 Meterbridge

taut and clamped on a meterscale which is mounted on

a wooden plateform. Two thick copper strips bent at right angles are connected at two ends A and
C of the wire as shown in Figure. The connecting terminals are provided on this metallic strip (at
the end points of a wire) where a battery can be connected. Another copper strip is fixed between
two thick copperstrips in such a way that the metallic strip has two gaps across which resistors can
be connected. One end of a sensitive galvanometer is connected to the copper strip midway (at point
B) between the two gaps. The other end of the galvanometer is connected to a ‘jockey’ D which
can slide over the wire to make electrical connection.

As shown in figure 3.22 unknown resistance R, is connected across one of the gaps and a
standard known resistance R, is connected across the other gap.

For one value of known resistor R,, the jockey is slided along the wire to get the position
(say D) where the galvanometer will show no current. Point D is called balance (null) point.

Let the distance of the jockey from the end A at the balance point is AD =/, and the length

of the wire DC is l2, then from equation (3.12.3), we have,

R, _ Resistance of Wire AD

R2 ~  Resistance of Wire DC
R Lp l
1 1 1
0 _ = _ 1 3.12.4
R, Lp L ( )

where, p = resistance per unit length of the wire

R, = (100-{)

]
DR R o
- Ry = Ry 00-1)
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l
By choosing various values of known resistance R, the value of 1_1 is calculated each time and
2

the average value of unknown resistance R, can be found. The above method gives accurate valve
of unknown resistance R, but this method is not useful for the measurement of small resistance.

Hlustration 18 : Calculate the current flowing through the BC wire for the given circuit (a)
shown here.

200€2 Solution : Kirchhoft’s Law can be used to solve the

(5) above problem. We shall redraw the above circuit in a

1000 1002 ~ 2000 different way. The four points ABCD are common to two

A _W' B W N?:“;\N_ W different resistances. Let us start from point A. At point

A one end of resistances (1) and (4) is common. (Figure

Wﬂ . (b)). A 100 Q resistance is connected between B and C.
(431008

Resistance 200 €2 is connected between points C and D

“ (resistance 3). A 200 € resistance present between B
LoV

and D (resistance 5). The original circuit can be redrawn

@ as shown in the figure (c).

20062

1002

0oL
(1)

(b) (©

In the above circuit a 10 V battery is connected between points A and D.

We form a close loop when we go from point A to B to D to C and back to A. A battery
is connected between points A and D.

Under the balanced condition of Wheatstone bridge no current will flow from point B to C, since

R
R = R_4 condition is satisfied.
3

No current flows through the resistor connected between the points B and C.

"I =0
Mlustration 19 : 200 € resistor is connected in one of the gaps of the Meterbridge. Series
combination of X €2 and 50 €2 resistors is connected in the second gap. Here unknown resistance
X € is kept in a Heat bath at a certain temperature. Calculate the unknown resistance and its
temperature if the balance point is obtained at 50 cm. The total length of the wire of the
Meterbridge is equal to 1 meter. The resistance of the unknown resistance at 0 °C temperature is

equal to 100 Q o = 0.5 x 107 °C! for the material of the X Q resistors.
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Solution : Here, we have |~ = A
2 2
200 _ 50 B
X+50 ~ 50 R, =200 Q
X =150 Q R2=(X+50)Q
Now, X = X [1 + o0 — 0)] = 50 cm

150 = 100[1 + 5 x 107°0]
15=1+5x 1070
. 6 =100 °C

Note : We can understand from the above example that temperature of the resistor can be
measured using wheatstone bridge. (The varying temperature of the resistor can also be measured.)

100 — 50 = 50 cm

The thermometer can be constructed by knowing the relationship between resistance and
temperature. Such a thermometer is known as resistance thermometer. The manufacturer of such
a thermometer provides us with R — T graph. Presently thermometer with digital display is
available. The resistance thermometer is an example of a transducer. In a transducer the physical
quantity is converted into an electrical quantity or vice-versa.

3.13 Potentiometer
(A) The Requirement of Potentiometer : We have seen that the terminal voltage of a
battery is given by,
V==¢t-1Ir (3.13.1) €
a o I b
where € = emf of battery 1 | | b |

and r = internal resistance of a battery.

As shown in figure 3.23 if voltmeter used in the

laboratory (table voltmeter) is connected across two termi- /"'\
nals (between points a and b) of a battery, then it will :[ @V
measure the potential difference between two terminals of

a battery or a terminal voltage (V). Figure 3.23

The equation (3.13.1) reduces to V = € when the internal resistance of a battery is zero (i.e.
r = 0) or no current flows through the battery (i.e. I = 0). But the internal resistance (r) of a
battery can never be zero. Therefore voltmeter can measure the emf (€) of a battery only if no

current is drawn from it. (i.e. I = O open circuit condition.)

The resistance of an ordinary voltmeter is approximately in the range of 5000 € to 6000 Q.
Hence a small amount of current flows through the battery when connected to voltmeter. This
means that the voltmeter measures only the terminal voltage (V) and not the emf (€) of a
battery.

Thus, in order to measure the emf of a battery we have to design a new device in which open
circuit condition (I = 0) is achieved. Such a device is called potentiometer.

Potentiometer is such a device in which one can obtain a continuously varying potential
difference between any two points which can be measured simultaneously. This can be
understood from the principle of potentiometer.
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(B) Principle of Potentiometer : As shown
——
) C

]

in figure 3.24 a battery of emf € and having internal

r L?ng resistance r is connected in series with a resistance
I ,~— Resistive o ) )
: Wire box R and a long resistive wire of uniform cross-
R.B I I

sectional area (i.e. the resistance per unit length of

.

AB =L, AC =1 o _
the wire is same throughout the length of the wire.)

Figure 3.24 Principle of Potentiometer It is to be noted that the resistance box R is not
always necessary to connect.
(Note : In potentiometer a long piece of uniform wire few meters in length across which a
battery is connected is clamped on a meterscale which is mounted on a wooden plateform.)
Let L be the length of the potentiometer wire AB and p be the resistance per unit length of
the wire. Therefore the resistance of the wire AB = Lp. If R is the resistance of the resistance
box then the current flowing through wire AB can be given by Ohm’s law as follows.

€

I= Riipir

(3.13.2)

If [ = length of the wire from A to C then [p = resistance of the AC part of wire,
Therefore, the potential difference between A and C is = IIp

This potential difference is denoted by V,
sV, =1ip (3.13.3)
Substituting the value of I from equation (3.13.2) into equation (3.13.3),

&
Vv, = (m]lp

. &P
. V[ = R+Lp+r l (3.134)

"V, e ] (3.13.5)

Principle : The potential difference between any two points of a potentiometer wire is
directly proportional to the distance between that two points. By taking different values of I,
different potential difference can be obtained. Points A and C of the wire behave as if they are
positive and negative terminals of a battery. By changing the position of C (with the help of jockey)
the emf of such a battery can be continuously varied.

From equation (3.13.4),

_ Vi _&ep
. . . .Y . . .
The potential difference per unit length of the wire —~ = O is called potential gradient.

l
Its unit is Vm™.

The sensitivity of the potentiometer depends on the potential gradient along the wire. Smaller the
potential gradient, greater will be the sensitivity of potentiometer.

For a given V., the sensitivity of a potentiometer can be increased by increasing the length of
the potentiometer wire.
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(C) Uses of Potentiometer :

(i) Comparison of emf’s of two cells : Let € and €, be the emf’s of the two cells which
are to be compared using potentiometer. For this purpose, the emf (€) of the driver cell (main
battery) in potentiometer should be greater than emf’s of cells (€, and €,) to be determined.

As shown in figure 3.25, firstly the positive terminal
of cell € is connected to the end A of the potentiometer

wire and the negative terminal of € is connected to

jockey through a sensitive galvanometer. For this

connection, plug key k, is inserted.

The jockey is moved along the wire AB till the
galvanometer shows no deflection. Let the position of R.IB B,

the jockey be C,. In this condition no current is

flowing through cell € and hence its terminal voltage AC =1,
is equal to its emf (€. Such a point on the wire is AC, = |,
called null point. Suppose, null point C,, is at a Figure 3.25 Comparision of emfs of Two

. . . Cells
distance [/, from point A of wire. In the balanced

condition, potential difference between point A and C,
of the wire should be equal to emf of cell €,.

From equation (3.13.4), we have

VAC] =¢g = ol (3.13.7)

1
_ 5P . .
where, 6 = |} Tlptr respresents the potential gradient.

Now by inserting plug key K, battery €, is connected in place of €. The null point (C,) is again
obtained for cell €, by sliding jockey on the wire. Let the balancing length be
AC, = lz, then,

Vi =& =0l (3.13.8)
Takizng the ratio of equation (3.13.7) and (3.13.8), we get

l 4

X = 7, (3.13.9)

Using the above equation the emfs of two cells can be compared.

In practice, the emf of a cell is determined by comparing it with the emf of a standard cell and
equation (3.13.9) is employed.

One can obtain desired value of potential difference between any two points of the wire by
choosing appropriate value of R from the resistance box. The potential difference of the order of
10°%v (=1 WV) or of the order of 1073V(= 1mV) can be obtained. Thus, potentiometer can also
be used to measure a very small emf.

Note : If two cells of emfs € and €, are first connected in helping condition and then in
opposing condition, the lengths of the null point is respectively /; and [, then,

€ L+

s I lel: (3.13.10)

€
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(ii) To Determine the Internal Resistance of a Cell :

We can also use a potentiometer to measure the
internal resistance of a cell. For this as shown in figure
3.26 the cell (emf €) whose internal resistance (r) is to be

determined is connected across a small resistance box R

. through a key K,.

The null point C, is obtained on the potentiometer

wire when key K  is open. (i.e. when resistance box is

2
not connected.) At this time there will be no flow of

current through a cell (€) which is called open circuit

Figure 3.26 Internal Resistance of a Cell condition. If the null point C, is obtained at a distance [,
from point A of the wire, then

V,c =& =0l (3.13.11)

When key K, is closed, resistance box comes in the circuit. Null point C, is again obtained on

the wire for an appropriate value of R. If the terminal voltage of a cell is V and null point is

obtained at AC, = lz,

VAC2 =V = ol, (3.13.12)
£ _ ll
vV =T (3.13.13)
2
From Ohm’s law € = 1 (R + r)
and V = IR
This gives, & = XL (3.13.14)
Using equation (3.13.14) into equation (3.13.13),
R+r _
R L,
ll
~r=R E_l (3.13.15)
Using equation (3.13.15) we can find the internal resistance of a given cell.
3.14 Electrical Energy, Power : Joule’s Law
I"*: K Consider figure 3.27 A battery having terminal voltage
A
I LY
I of V volt is connected to a resistance R and the circuit
B
1" is completed. As explained above at end A of the resistor,
A R B energy of 1 C positive charge is V Joule. This energy per
VVVVVVVVVVVVVV unit positive charge represents the electric potential at
Figure 3.27 point A.

If the electric current is considered due to the motion of electrons (which is true in reality), it
can be said that a unit negative charge possesses an electrical energy of V Joule at end B of the
resistor.
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We have also studied that when the electrons acquire drift velocity they experience collisions
with the positive ions oscillating about their mean position, and the energy acquired by the electrons
is partly transferred to the ions making their oscillations faster and more random. In Standard 11 we
have already seen that heat energy is the kinetic energy associated with the random motion of
constituent particles of a substance. Accordingly, this increase in the energy of oscillations of the ions
due to collisions with electrons manifests as heat energy.

The heat energy released in a conductor on passing of an electric current is called the
“Joule heat” and the effect is called the “Joule effect”.

The p.d. of V volt applied between two ends of a conductor means that V joule energy is
utilized when a unit charge passes through the conductor.

If Q coulomb charge passes through the conductor in ¢ seconds, the electrical energy consumed
in 7 second = heat energy produced during this time,

W=VAQ (3.14.1)
This is the heat energy produced in time f.

Let a steady current of I ampere be produced due to this charge then,

=4
t

.Q=1Ir

S W=VIt (3.14.2)
Now according to Ohm’s law, V = IR

W = PRt (3.14.3)

*. Electrical energy converted into the heat energy per unit time (power) is given by
P = I’'R (3.14.4)

Here, R is the Ohmic resistance of the conductor, value of which does not depend upon V or
I. Considering R as a constant, the heat energy produced per second.

P < I? (3.14.5)
This equation is known as Joule’s law.

Joule’s Law : “The heat produced per unit time, on passing electric current through
a conductor at a given temperature, is directly proportional to the square of the electric
current.”

The heat energy produced here is in joules.

We must know the relation between joule and calorie if we want to express heat energy in
calories. Such a relation was given by Joule (James Prescott Joule, 1818—1889) according to which
W = JH. Where W is in joule and H is in calorie. Here J is called joule’s constant or mechanical

equivalent of heat and its value is J = 4.2 ] cal™\.

2
_ T'Re(joule)  12R¢

H= J(Joule/cal) — " J cal (3.14.6)
3.15 Practical Applications of Joule Heating

Generation of heat on passing electric current through a conductor is an inevitable
phenomenon. In most cases it is unwanted, as electrical energy gained by charges is wasted
in the form of heat energy. This is known as ‘Ohmic dissipation’ or ‘Ohmic loss’. For
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example, a considerable part of electrical power supplied to an electric motor used to pump
water to overhead tank in our houses, is wasted in the form of heat. Moreover, when current
is passed through a circuit, properties of some components in the circuit change due to heat
produced. Long distance electric transmission is done at very high voltage to reduce this
Ohmic loss.

Joule heat is useful in case of some domestic applications also. Usefulness of Joule heat
will be immediately clear if you think of electrical appliances used such as electric iron, electric
toaster, electric oven, electric kettle, room heater etc. Joule heat is also used in electric bulbs
to produce light. When electric current is passed through the filament of a bulb, its temperature
rises considerably due to the heat produced, and hence it emits light. The filament should
consist of a metal of very high melting point (e.g. tungsten’s melting point is 3380° C). As far
as possible this filament should be thermally isolated from the surrounding.

Note that only a very small fraction of electrical power supplied converts into light. Normally
bulbs emit 1 Candela of light energy per 1 W electrical power consumed.

A very common application of Joule heat is fuse wires used in circuits (and in our houses.)
A fuse consists of a piece of wire of metals having low melting point (such as aluminium, iron,
lead etc.) and is connected in series with an appliance. If a current larger than a Pre-decided
value flows, the fuse wire melts and breaks the circuit and thus protects the appliance.

Illustration 20 : Electric current divides among two resistors connected in parallel in such a
way that the joule heat developed becomes minimum. Using this fact, obtain the equation of division
of currents.

Solution : Suppose total current I divides into two parts among two resistances R, and R,
connected in parallel. Let current passing through R, be I, then the current passing through R, will

be I, = I — I,. Joule heat produced in unit time in this case will be,

— 712 2
H=1%R, +d- )R,

For this heat to be minimum, we should have d_I] =0

dHd
a, = 2LR, + 20 — I)-DR, = 0

IR,
On simplifying, we get I, = gTR-
1752

IR,
AISO, 12: I - Il =1 — R]+R2

IR,
0=
2 R1 +R2

Note : How does electric current know that some resistance is low so that more of it
should pass through it ! This is due to a fundamental principle of physics which you will
study in future. That fundamental principle is reflected here.

Hlustration 21 : When two resistors are connected with voltage V individually, the powers
obtained are P, and P, respectively. Then,

(i) they are connected in series
(ii) they are connected in parallel

Shown that the product of powers in (i) and (i) is P1P2'
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Solution : Here suppose that the given resistances are R, and R,.
When they are connected separately,

V2

P1=R—1 .ansz:R—2 (D
N v?
R1 = 3 and R2 = (2)

1 2
Their combined resistance in series connection is, Rl + Rz.
This combination is connected with voltage V.

2
. The power in case of series connection, P = ﬁ
Substituting values of R, and R, from equations (2),
P = _ v biPy 3)
s V2 j V2 P +P,
b P
: . . . RR,
Equivalent resistance for their parallel connection = &
1752
V2 %
. The power for this combination, Pp = R R, = RER, R, + R)
R,+R,
Using equation (2) in above equation,
2 2
2(V° .V
L
P~ 4011
p Ll
\Y (Pl ><P2
P = P1P2><(P1+P2)
T p T P1P2
P =P + P 4

Note : As the voltage across both the resistors is the same in parallel connection, we could
have obtained equation (4) directly also !

From equations (3) and (4),

P x P =P XP,

Ilustration 22 : A battery having an emf € and an internal resistance r is connected with a

resistance R. Prove that the power in the external resistance R is maximum when R = r.
I

Solution : Power in the external resistance >
P = 'R
€ : I
- b= (R+r) R £

=
dP _ 2¢°R N g ~ 0 — <]
AR~ T R+’ | R re g
R P
(being the condition for maximum or minimum P) r: : 7
“R=7r 1<h Z
o
(It can readily be shown by the second differentiation B
(¢

of P with respect to R, that for r = R it is negative. This
shows that for r = R, Power P is maximum.) Figui;'e 38
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SUMMARY

Electric Current : Charges in motion constitute an electric current.
The amount of charge flowing per unit time across any cross-sectional area of a conductor
held perpendicular to the direction of flow of charge is called current (I).

Q

For a steady flow of charge, I = "

If the rate of flow of charge varies with time,

li A d!

Electric Current Density : It is the amount of electric current flowing (electric charge
flowing per unit time) per unit cross—sectional area perpendicular to the current at that point.
If a cross-sectional area is not perpendicular to the current, then the current density at any
point,

dl

I = dacos9

. dl = Jda cos® = ?.d?

If the cross-sectional area is perpendicular to the current and if J is constant over the entire
cross-section then,

1= [Tda = I [da

a

S I =JA
cy= A1
.J—A

Ohm’s Law : “Under a definite physical condition (e.g. constant temperature) the current (I)
flowing through the conductor is directly proportional to the potential difference (V) applied
across its ends.”

From this, % =R or V =1R

The reciprocal of a resistance i.e. % is called the conductance of the material.
Resistivity : The resistance of a conductor,

l
R:p.K

s resistivity p = %

The reciprocal of a resistivity is called conductivity of the material.
. . 1

.. Conductivity 0 = o

Drift Velocity and Relaxation Time : The velocity of electron corresponding to the effective

(drift) displacement of the electron in the presence of electric field is known as the drift

velocity.

Relaxation Time : The average time between two successive collisions of the electron with

the ions is called relaxation time (T).

The drift velocity achieved by the electron during the relaxation time (T) is,

_ _ (Ee
v, = at = (m)r
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The relation between the drift velocity and current is, I = nAve.

The relation between the drift velocity and current density is, J = % = nev,.

6. The Relation between the Resistivity (p) and Conductivity (G)

ne’t i
0= — and p = >
m ne t

7. Mobility : It is the drift velocity of a charge carrier per unit electric field intensity.

G = nel
The conductivity of a semiconductor,
c = nel, + ney,
8. Temperature dependence of resistivity

The relation between the resistivity of a metallic conductor and temperature is given by the
following empirical formula.

Po = peo[l + o<(0 — 90)]

where, 90 = reference temperature

For a resistance,

Ry = Reo[l + (0 — 90)]

o< = temperature coefficient of resistance

For metals o< is positive i.e., resistivity of metals increases with the increase in temperature.
For semiconductors o< is negative i.e., their resistivity decreases with the increase in

temperature.

9. Super Conductivity : “The resistance of certain materials reduces to almost zero, when its
temperature is lowered below a certain definite temperature (which is known as critical
temperature T.). The material in this state is known as superconductor and this phenomena
is known as a superconductivity.

10. The emf of a Cell and Terminal Voltage : When unit positive charge is driven from
negative terminal to the positive terminal due to non-electrical forces, the energy gained by the
charge (or work done by the non-electrical forces) is called an emf (€) of a battery.

The potential difference between the two terminals of a battery is called the terminal voltage
(V).
The terminal voltage of a battery is, V = € — Ir

11. Secondary Cell : The cells which can be restored to original condition by reversing chemical

processes (i.e. by recharging) are called secondary cells. e.g. lead accumulator.

12.  Charging : If the secondary cell is connected to some other source of larger emf, current
may enter the cell at the positive terminal and leave it at the negative terminal. The electrical
energy is then converted into chemical energy. This is called charging of the cell.

For the charging of a lead storage cell (lead accumulator),

V-¢
r+R
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13.

14.
15.

16.

17.

18.

Junction or Branch Point : It is the point in a network at which more than two conductors
(minimum three) meet.

Loop : A closed circuit formed by conductors is known as loop.

Kirchoff’s Rules

First rule : “The algebraic sum of all the electric currents meeting at the junction is zero.”
L2 =0

Second rule : “For any closed loop the algebraic sum of the products of resistances and the
respective currents flowing through them is equal to the algebraic sum of the emfs applied
along the loop.”

2IR = Xe

Connections of Resistors

Series Connection

R, =R, +R, + R, + ... +R,

where, R, = Equivalent resistance of n resistors connected in series.
Parallel connection

4 _ 1
Rp R,

+ -

€ 1
R, ' R
where, R, = Equivalent resistance of n resistors connected in parallel.

Series Connection of Cells : For the series connections of two cells of emfs € and €, and

internal resistances . and o

I = 81-’-—82 _ eeq
R+(r+r,) R+req

where, I = Current flowing through the external resistance R connected across the series

connection.

Equivalent emf €, = & T &

Equivalent internal resistance Tog =10 15
Parallel Connection of Cells : If two cells of emfs g and €, and internal resistances T

and r, are connected in parallel, then we have,

8.5
I non B TE
1+B+B R(r1+r2)+r1r2
h n
81r2 + 827'1
D1 = (i+r) S
. - I - R+re
R+ 172 q
(rl + 7'2)
Equivalent emf € = G S
quivalent emf g, = Py
. . . iy
Equivalent internal resistance r, =
eq " + 153

128 - Physics-111



19.

20.

21.

223

Wheatstone Bridge : In the balanced condition of Wheatstone bridge,

R, R

R, ~ R,
Potentiometer : It is a device in which one can obtain a continuously varying potential
difference between any two points which can be measured simultaneously.

Principle : The potential difference between any two points of a potentiometer wire is directly
proportional to the distance between that two points.

Ve ]
£.p
e (R+Lp+r)' !

€.p

R+Llp+r +rj = Potential gradient

V
where, 0 = Tl z(

Joule Effect : “The heat energy released in a conductor on passing an electric current is
called the ‘Joule heat’ and this effect is called the ‘Joule effect’ ™.

Joule heat W = I’Rt (Joule)

2

H=L1X a)
Electrical energy consumed per unit time or heat energy produced per unit time i.e. electric
power
P = 'R
P < I
Joule’s Law : “The heat energy produced per unit time, on passing electric current through
a conductor at a given temperature, is directly proportional to the square of the electric
current.

Ohmic loss : On passing electric current through a conductor, an electrical energy gained by
charges is wasted in the form of heat energy. This is known as “Ohmic loss”.

EXERCISE

For the following statements choose the correct option from the given options

1.

In a hydrogen atom, the electron is moving in a circular orbit of radius 5.3 X 107" m with
a constant speed of 2.2 X 10° ms~!. The electric current formed due to the motion of electron
TR .

(A) 1.12 A (B) 1.06 mA (©) 1.06 A (D) 1.12 mA

A ring of radius R and linear charge density A on its surface is performing rotational motion
about an axis perpendicualr to its plane. If the angular velocity of the ring is ®, how much
current is constituted by the ring ?

(A) RwA (B) R*mwA (©) Ro’A (D) RwA?

A cell supplies a current of 0.9 A through a 2 € resistor and current of 0.3 A through a 7

Q resistor. What is the internal resistance of the cell ?
(A) 05 Q B) 1.0 Q © 1.2 Q D) 2.0 Q
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10.

A The cross-sectional area of the plane shown in the figure

Conductor,"xglx-:: is equal to 1 cm? 2A current flows through a conductor.

/ ] =2

P = The current density at point P in the conductor will
y be ... .

(A) % X 10*Am™ (B) g X 10*Am™

© £ x 107Am> D) £ x 10*Am™

A current density of 2.5 Am™ is found to exist in a conductor when an electric field of

5 x 10%vm™! is applied across it. The resistivity of a conductor is .......... .
(A) 1 x 10°® Qm (B) 2 x 10 Qm
(©) 0.5 x 10 Qm (D) 12.5 X 107 Qm

A wire has a non-uniform cross-section as shown in
figure. A steady current is flowing through it. Then the

e _ B arift speed of the electrons while going from A to B

(A) is constant throughout the wire (B) decreases
(C) increases (D) varies randomly

A resistive wire is stretched till its length is increased by 100 %. Due to the consequent
decrease in diameter, the change in the resistance of a stretched wire will be .......... .

(A) 300 % (B) 200 % (C) 100 % (D) 50 %

At what temperature would the resistance of a copper conductor be double its resistance at
0°C ? Given o< for copper = 3.9 x 107 °C”!

(A) 256.4°C (B) 512.8°C (C) 100°C (D) 2564 K

You are given n identical resistors each of resistance r€2. First they are connected in such a
way that the possible minimum value of resistance is obtained. Then they are connected in a
way to get maximum possible resistance. The ratio of minimum and maximum resistance
obtained in these ways is ......... .

@ 1 ®) n © ©) -5

P and Q are two points on a uniform ring of resistance R. O is the centre of the ring. If
the part PQ of the ring subtends an angle © at the centre O of the ring
(i.,e. LPOQ = 0), the equivalent resistance of the ring between the points P and Q will be

[radius of the ring = r and resistance per unit length of the ring = p]

0 _
W) yren -0 ® R(-%)  © & @) R(Z=2)
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11.

12.

13.

14.

15.

Current Electricity

A wire in a circular shape has 10 € resistance. The resistance of wire per 1 m length is 1
Q. If the equivalent resistance betwen A and B is 2.4 €, then the length of the
chord AB will be equal to .......... meter.

B

(A) 24 (B) 4

(C) 438 (D) 6

In the circuit shown in figure, what will be the effective resistance between points
A and B ?

(A) r (B) 5

© % (D) 2r A B

Figure shows a part of a closed circuit. If the current flowing through it is 2A, what will be
the potential difference between points A and B ?

Iv
(A) 42 V B) +1 V ) 2;"* AW \ | 2’*‘, AV N
A l,rq_ﬂ 1;451 B

< 2V O -1V

In the network shown in figure, the equivalent resistance between points X and Y will
be ... .

(A) r (B)

NI~

©) 2r (D)

[OST Y

The effective resistance between points A and B of the
network shown in figure .......... .

A) 2 Q (B) 3 Q

©) 6 Q (D) 12 Q




16.

17.

18.

19.

20.

21.

ox

The equivalent resistance between points X and Y in the following
§§~'“ figure is .......... )
3
2 A) 4 Q
&£ (B) e
_5,.5411
© 1 Q
ol
Jn (D) 3 Q.

What is the total current supplied by the battery to the circuit shown in the adjoing figure ?

WWA

£

(A) 2 A

(B) 4 A

©) 6 A

D) 9 A

A%

A uniform conductor of resistance R is cut into 20 equal pieces. Half of them are joined in
series and the remaining half of them are connected in parallel. If the two combinations are
joined in series, the effective resistance of all the pieces is :

(A) R ®) 5 © x D) X

What will be the time taken by electron to move with drift velocity from one end to the other
end of copper conductor 3 metre long and carrying a current of 3 A ?

[The cross-sectional area of the conductor = 2 X 107° m? and electron density for copper
n =85 x 10% m?]
(A) 2.72 x 10°%  (B) 2.72 x 10*%  (C) 2.72s (D) 2.72 X 107%

Masses of three wires of copper are in the ratio 5 : 3 : 1 and their lengths are in the ratio
1 : 3 : 5. The ratio of their electrical resistances are ......... .

(A)5:3:1 B) 125 :15:1(C)1:15:125 M) 1:3:5

The resistance of a 10 m long potentiometer wire is 20 €2. It is connected in series with a
3 V battery and 10 € resistor. The potential difference between two points separated by

distance 30 cm is equal to .......... .

(A) 002 V (B) 0.06 V ©) 01V D) 1.2V
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22.

24.

25.

26.

27.

In the potentiometer circuit shown in figure, the balance length AJ = 60 cm when switch S
is open. When switch S is closed and the value of R = 5 Q, the balance length AJ' = 50

cm. What is the internal resistance of cell C' ?

| €
'|I
(A) 05 Q B) 1 Q ) 1
A y o
o G :
) 15 Q (D) 0.1 Q
R 5

n identical cells each of emf € and internal resistance r are connected in parallel with resistor

R. The current flowing through resistor R is, .......... .

_ne _ne € &€
(A) R +nr (B) nR+r © R+r D) nR+r

A wire is uniformly stretched to make its area of cross-section %th times (n > 0). What will

be its new resistance ?

1
(A) ? times (B) n® times © % times (D) n times

If the current in an electric bulb increases by 1 %, what will be the change in the power of
a bulb ?
[Assume that the resistance of the filament of a bulb remains constant.]

(A) increases by 1 % (B) decreases by 1 %
(C) increases by 2 % (D) decreases by 2 %
In the following circuit if the heat evolved in the 10 Ohm resistor is 10 cal/s. The heat evolved
in the 4 € resistor is approximately ............ cal/s.
40 563
(A) 4 B) 5
©) 10 (D) 20 Sy
MWW

Two bulbs of 220 V and 100 W are first connected in series and then in parallel with a supply
of 220 V. Total power in both the cases will be .......... .

(A) 50 wW, 100 W (B) 100 W, 50 W
(C) 200 W, 150 W (D) 50 W, 200 W
ANSWERS
1. (B) 2. (A) 3. (A) 4. (A) 5. (B) 6. (B)
7. (A) 8. (A) 9. (D) 10. (A) 11. (B) 12. (B)

13. (A) 14. B) 15. (A) 16. (A) 17. (C) 18. (C)
19. (B) 20. (C) 21. (B) 22. (B) 23. (B) 24. (B)
25. (C) 26. (B) 27. (D)

Current Electricity - 133



Answer the following questions in brief :

1.

Lol

n s

9.
10.
11.
12.
13.
14.
15.
16.

Why is an electric current density defined ?

How many electrons are present in 1 nenocoulomb (1 nc) charge ?

The internal resistance of a battery of 2 V terminal voltage is 0.2 Q. If the current flowing
through the battery is 0.5 A, what will be the emf of battery ?

Define the mobility of a charge carrier.

Give the relation between the drift velocity and current flowing through the conductor.

The drift velocity of the electron is v when current I is flowing through a conductor of radius
r. What will be the drift velocity of electron in a similar conductor of radius 2 r if the same
current (I) is flowing through it ?

Give the empirical formula showing the relation between the resistivity of a metallic conductor
and temperature.

Resistance of a wire is 10 €. What will be the required change in the length of it to increase
its resistance to 1000 € ?

State the law of conservation of charge.

Kirchoff’s second law is the consequence of which law ?

Why the current in a superconductor can be sustained over a long interval of time ?

Why the emf (€) of a battery cannot be measured using table voltmeter ?

State the principle of potentiometer.

Write Joule’s law.

Give the examples of “Ohmic loss”.

What are the changes made in the temperature of a semiconductor in order to reduce its
conductivity.

Answer the following questions

1.

10.

11.

12.

13.

14.
15.

Define an electric current density. Clarify the differences between the electric current and
electric current density.

Explain the emf of a battery. When the battery is said to be in “open circuit condition” ?
Write Ohm’s law. Explain the I-V characteristics for a conductor obeying Ohm’s law.
Using necessary diagram explain the drift velocity of electron in a conductor in the presence
of external electric field.

Explain the mobility of a charge carrier and obtain the formula for the conductivity of a
semiconductor.

Obtain the relation between the drift velocity and current density.

Accepting the single valuedness of electric potential in an appropriate closed circuit, derive
Kirchoff’s second rule by drawing necessary circuit diagram.

Deduce the principle of potentiometer with the help of necessary circuit diagram.

Explain the method of finding the internal resistance of a cell using potentiometer.

Giving appropriate circuit diagram, describe the charging process of a lead storage cell
(accumulator). Obtain the formula for the charging current.

Derive the expression to find the unknown resistance in the balanced condition of Wheatstone
bridge.

Obtain an expression for the equivalent emf and equivalent internal resistance in the parallel
connection of two cells.

State the limitations of Ohm’s law.

Write notes on superconductivity.

What is Joule heat and Joule effect ? Obtain Joule’s law for Joule heating.
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Solve the following examples

1. A stream of electron moves from the electron gun to a screen of a television. The electric
current of the 10 [l A is constituted. Calculate the number of electrons striking the screen at
every second. Also calculate magnitude of the charges striking the screen in one minute.

[Ans. : n = 6.25 X 10" electron/Sec., Q = — 600 UC]

2
2. An electron in the hydrogen atom is revolving around a proton with a speed of %. The radius

2
of the electron orbit is equal to el Obtain the formula for the electric current in the above

case. Mass of the electron = m, charge on electron = e. (Hint : } = 5-)

47'[211165

[Ans. : I = e

|

3. A current of 1.0 A is flowing through a copper wire of length 0.1 m and corss-section
1.0 X 107° m%

(i) If the resistivity of copper be 1.7 X 1078 € m, calculate the potential difference across
the ends of a wire.
(i) Determine the drift velocity of electrons.

[Density of copper = 89 X 10° kg m™, valancy of Cu = 1, atomic weight of copper =
635 g mol ™!, N, = 6.02 X 10% mol™]

[Ans. : V = 1.7 x 107 V and v, = 74 X 107 ms™]

4. An n-type semi-conductor has 4 X 107 meter width, 25 X 107 metre thickness and

6 X 1072 metre length. 4.8 mA current is flowing through it. Here voltage is applied parallel
to the length of the semi-conductor. Calculate the current density. The density of the free
electron is equal to 10> m™>. What will be the time taken by the electron across the length
of the semi-conductor ?

[Ans. : 4.8 X 10° Am™2, 2 x 1072 ]

5. A cylindrical wire is stretched to increase its length by 10%. Calculate the percentage increase
in resistance. [Ans. : 21%]

6. One conducting wire of length 1 m is cut into two unequal part P and Q respectively. Now,
part P is stretched to double its length. Let the modified wire be R. If the resistance of the
R and Q wires are same, then calculate the length of P and Q wires.

[Ans. : Length of the P wire is % meter, Length of Q wire is % meter]

7. The resistance of one aluminium and one copper wires, having identical lengths is equal. Which
of the two wires will be lighter ? p, = 2.63 X 10°* Q m, Pe, = 172 X 10® Q m the density
of the aluminium is 2.7 X 10® kg m™ and density of cooper is 8.9 x 10° kg m™.

[Ans. : aluminium]
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11.

12.

13.

14.

15.

E, 2
A :: B The emf of the batteries E, F, G and H are

2V, 1V, 3V and 1V respectively. Their internal resistance

AHIV are respectively 2 Q, 1 Q, 3 Q respectively. Calculate
0

A p.d. between B and D.

|
~

' 2
G '3y [Ans. : EV]

Find the effective resistance between the points A and B

in the network given below. All wires in the network have

the same resistance ‘7’ Ohm.

————— — —H
/ [Ans. : % Ohm]

Consider an infinite network as shown in the figure.

.'lll"lll'.'l .'f‘lll'"ljll'f :ij
The resistance of each of the wires of the network
is equal to R. Calculate the resultant resistance
between points P and Q.

AL
TEYryT
=)

i
Trrryy

¥ WA ——"\Wi—e (]

R R R R [Ans. : R (1 + 3)]
The length of a potentiometer wire is 200 cm. For a given cell, the null point is obtained at
80 cm. What will be the length of wire required for balancing the cell if the length of the
same wire is made 300 cm ? [Ans. : 120 cm]
A battery having an emf of 12 volt and an internal resistance of 2 € is connected to another
battery having an emf of 18 volt and an internal resistance of 2 € in such a way that they
are opposing each other and the circuit is closed. Calculate the following :
(1) current flowing in the circuit.
(2) electrical power in the two batteries.
(3) terminal voltage of the two batteries.
(4) electric power consumed in the batteries.

[Ans. : (1) 15 A 2) 18 W, 27 W (3) I5 V, 15V (4) 45 W, 45 W]

An electric kettle has two heating coils. When one of the coils is switched on, a given quantity
of water in the kettle starts boiling in 6 minutes. When the other coil only is switched on, then
the same amount of water starts boiling in 8 minutes. If the two coils are switched on in
parallel how much time will the same amount of water take to boil ? Each time the voltage
applied is the same. [Ans. : 3.43 min]
Two wires which are made of the same material have the same cross-sectional area, but
different lengths [, and [. Prove that if they are used as fuse wires, they will melt for the
same value of the current flowing through them, in the same time.
A and B are two electric bulbs with their ratings respectively 40 W, 110 V and 100 W and
110 V. Find their respective filament resistances. If the bulbs are connected in series with a
supply of 220 V, which bulb will fuse ? [Ans. : R, = 3025 Q, R, = 121 Q, bulb A]
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4

4.1 Introduction

MAGNETIC EFFECTS OF ELECTRIC CURRENT

Branches of electricity and magnetism have been known for more than 2000 years. Danish
physicist Oersted’s observation and contributions given by Rowland, Faraday, Maxwell and
Lorentz, unified these two branches, initially developed independently.

New concept was developed when the Laws obtained from the experimental studies of
electricity and magnetism were presented mathematically and led to fundamental unification of
these two branches. This helped in understanding nature of light and production of electromag-
netic waves and its propagation become possible. As a result of this revolution is created in
communication.

The branch of physics which envelops a comprehensive study of electricity and magnetism
is called electrodynamics. In the modern technology of communication electrodynamics is of
prime importance.

In the present chapter we will study, magnetic field produced due to electric current, force
on electric charge moving in the magnetic field, force on current carrying conductor placed in
magnetic field, cyclotron, galvanometer etc.

4.2 Oersted’d Observation

Some experimental observations are involved in the development process of the study of
electricity and magnetism. One of theses observations is the Danish physicist Oerted’s obser-
vation. In the year 1819 A.D. he made (Hans Christian Oersted 1771—1851) the following
observation. he was a school teacher in Denmark.

Yo\ g \

Figure 4.1 Oersted’s Observation

Arrange the conductor (wire) parrallel to the magnetic needle such that it remains below
the wire as shown in figure 4.1(a). On completing electric circuit shown in figure 4.1(a) current
passes through the conducting wire and magnetic needle gets deflected and becomes perpen-
dicular to the conducting wire see figure 4.1(b).
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Thus in this observation of the experiment, he noted that when electric current passes
through the conducting wire magnetic field is produced arround it.

This observation was presented to the French Academy by scientist Arago on 11th
September 1820.

4.3 Biot—Savart’s Law

When Biot and Savart, in Paris, came to know about Oested’s above mentioned discovery, they,
from the analysis of experimental studies, presented a Law for magnetic field produced due to
electric current element in the following form.

The intensity of magnetic field due to an electric current element I4/ at a point having

position vector 7 with respect to the electric current element is given by the formula.

N

4n 2

5
Here, 1dl = Current element i.e. the product of electric current and length of line element

dl of a conductor of very small length
W, = magnetic permeability of vacuum

= 41 X 1077 tesla meter ampere_1 (T m A™h

Po= unit vector along the direction of r

- Bo lLdixr
% r
= I 3 4.3.2)
From equation (4.3.1) ldB| = Z—g M (4.3.3)
r

Where 0 is the angle between Jf and 7.

Explanation : Consider a current currying conducting wire of any arbitrary shape as shown
in figure 4.2. Suppose we wish to find magnetic field produced due to this current carrying
conductor at any point P.

We can think of the wire to be consisting of line

elements dll, d12 ..... dl, of infinitesimal lengths. Here,

. ®f_?1 each element is so small that it can be locally consid-
l ered straight and parallel to the direction of electric
current. One such line element is shown in Figure 4.2

%
by di. 7 is the position vector of point P with respect
ﬁ
to the current element Id/. Intensity of magnetic field

Figure 4.2 (dB) at point P, due to this current element, can be

Biot—Savart’s Law found using equation (4.3.1).
Direction of 4B is perpendicular to the plane formed by d_; and 7 given by right hand

screw rule. As @l and 7 taken in the plane of page of the book, the direction of dB at point
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P is perpendicular to the plane of page of the book and going inside it shown by symbol &
(As shown in the Figure, the direction of the magnetic field at Q is perpendicular to the plane
of the page of the book towards the observer, and is shown by the symbol O.)

To find the total magnetic field at point P, we will have to take the vector sum of magnetic

field at P due to various current elements. As the current elements are continuous, the vector
addition can be written as a line integral, as under.

= S T

B = Jdb = X [THE o (4.3.4)
- -

2 Rl orarxr

B = 3n [55 (4.3.5)

Here, the line integral is taken over the entire path formed by the conducting wire.
Note that Biot-Savart’s Law is an inverse square Law like Coulomb’s Law and Newton’s
universal Law of gravitation.

The use of Biot-Savart’s Law becomes simple in case of

current carrying conductor of a simple geometrical shape. @ | /

Here, it is clear for the straight current currying conduc-

tor kept perpendicular to a plane, magnetic field at the

equidistance point in this plane from the conductor will be

same. That is as shown in the figure 4.3 magnetic field is @3

equal of every point on the circumference of circle at radius

OP and is along the tangent. For finding the direction of the

magnetic field right hand thumb rule is as follows.
Figure 4.3 Right Hand Thumb

Hold the wire in such a way that the thumb is in the Rule
u

direction of electric current, the fingers encircling the wire

indicate the direction of magnetic field as shown in figure 4.3.

4.4 Magnetic Field at a Point on the Axis of a Circular Ring Carrying Current
Consider a ring of thin wire carrying current I as

shown in figure 4.4. Its radius is a. X-axis is taken

along the axis of the ring. Suppose a point P is at a

distance x from the centre of the ring on the axis of

the ring.
Let the position vector of point P with respect to an

element dI of wire be ;. The magnetic field 4B at

>
point P due to the current element Id/ is in a direction

Figure 4.4 Magnetic Field Produced

5
perpendicular to the plane formed by 4/ and 7 . due to Circular Ring

Two mutually perpendicular components of this field B are (1) a component dBcos®
parallel to the X-axis and (2) a component dBsin¢ perpendicular to the X-axis. One thing is
clear from the Figure 4.4 that when vector sum of magnetic field due to all such elements are
considered, component dBsin¢ due to the diametrically opposite elements, which are in mutually
opposite directions, will nullify each other.
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Hence all axial components dBcosd will be in the X-direction and can be added together.
Using Biot-Savart’s Law

% .
|dB | @M _ Mo Idirsin® _ woldl sin®
4r r3 I 3 r2

. 4 -
where O is angle between dI and r .

But @ L 7 . sin® = sin% =1
Bl = Mo Il
. dBl =t 1 (4.4.1)

r

Now, point P is at a distance x from centre of the circular ring.

Hence dB(x) = IdB lcosd (4.4.2)
Using equation (4.4.1) in(4.4.2)

dB(x) = Z—i I;‘gcos(l) = Z—g L'lzl% (' from Figure cos¢ = %)
r r

Line integration should be taken over the circumference of the ring to find resultant
magnetic field B(x) at point P.
Ia
. B() = $dBx) = ~ $al
Ay

Here $dl is the line integral taken over the whole ring. .. $dl = 2ma.

Hola .
. B(x) = ——=.2ma ring.
4nr
But from the geometry of the Figure.
3
P=a+ = P = (@ +x0)?

2
Bola
B(x) = 3
2(a” +x°)2
The magnetic field is along the X-axis.
If the ring consists of N closely wound turns, we can write.

Nla*
B(x) = —0—" (4.4.3)
2a® +x%)2
Magnitude of the field at the centre of the ring is obtained by sustituting x = 0 in the
equation (4.4.4). Thus the magnetic field B (centre) at centre of the ring.

_ BN
(centre) — 2g
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For a point far away from the centre of the ring compared to its radius, we have x >>
a. Neglecting a® in comparison to x*> in equation (4.4.4)
;,LONIa2 pONIa2
B(x) = T = 5— (where x >> a) 4.4.5)
2.5 2x
2(x7)

Illustration 1 : Electron is rotating in circular orbit with radius 5.2 X 107"!'m and with
linear speed 2 X 10° m s™' in an Hydrogen atom arround the proton. Find the magnetic field
produced at the centre of the orbit.

Solution : Here v = 2 X 10® m s

r=52x10"m

e=16x10" C

Frequency of electron in the orbit f (No. of rotations completed in 1 second).

S
f= 2nr
Electric current I= f.e

_ v
- 2mr X e
2x10°
2%3.14x5.2x10°1

Magnetic field produced at the centre of the circular orbit.

X 1.6 X 107 = 9.8 x 107*A

_
B = 2r
4x3.14x107 x9.8x10~*

2x5.2x107'!
=118 T

Ilustration 2 : A charge Q is uniformly spread over a disc of radius R made from non-
conducting material. This disc is rotated about its geometrical axis with frequency f. Find the
magnetic field produced at the centre of the disc.

Solution : Suppose the disc with radius R is devided into
the concentric rings with various radii. Consider one of these
rings with radius r and width dr. Total charge on the disc is Q.

Hence charge per unit area = R
T

. The charge on the ring with radius r.

(area of the ring) (charge per unit area)

_ Q
= (2nrdr)(nR2]
If the ring is rotating with frequency f, then current produced I = % 2ntrdrf and magnetic
s
I 2n o Qf
field produced at the centre due to this current dB = oo % dr f= O—Zdr
2r T R

. Magnetic field B produced at the centre due to the whole disc.
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R R
. . P«()Qf o Qf
B = JdB = E'; RZ dr = 1()%2 !dr

1o Qf
R
Illustration 3 : Find the intensity of magnetic field at point P shown in the figure. At point O,
the wires do not touch each other. Corners of the two wires are very close to point O.

. B =

| Solution : Here point O is on the line of horizontal
currents, hence the magnetic field is not developed due
to them. It also lies on the directions of radial currents
hence magnetic fields due to them is also zero. So the
magnetic field is produced only due to the arc. To find
this, the formula of magnetic field at the center of a

ring having n turns and radius R can be used. According

O to this equation,

I
B = % (in a direction going in to the plane of paper) (1)

In the present case, the length of the arc is = RO

For one complete turn, the length of the arc is 2mR, then the number of turns for length
RO will be,

2R : 1 turn
RO 0
-9 = = = —
R 0 : 2 = number of turns, n 7R o
Using this in equation (1),
I
B = 2R X 27
B = % (o0ing in to the plane of fi
. = TR (going in to the plane of figure)

Ilustration 4 : A circular loop is prepared from a wire of uniform cross section. A battery
is connected between any two points on its circumference. Show that the magnetic induction
at the centre of the loop is zero.

Solution : A battery is joined between points A and B of the loop as shown in the figure.
D

Since the cross-section of the wire is uniform, the resistance
of the part of wire is proportional to the length of that part

(" R =pg).

Let the resistance per unit length be R'.
Length of wire ACB = [
Length of wire ADB = /[

1

2
.. Resistance of wire ACB = R, = R'[

Resistance of wire ADB = R, = R'[
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Current in wire ACB =1

Current in wire ADB = 1

These two parts ACB and ADB are in parallel between A and B points.

V =1R, = LR,

IR[)=1R"L)

L =L

Every small current element of this wire is perpendicular to the position vector of O, with
respect to it.

~. Biot-Savart’s Law gives, magnetic field at O due to ACB, as

B = Ho Illlsin900
1 4n e

and that due to ADB,

[T Izlzsin900

2 47'C r2
Since, Ill1 = 1212

we get, B, = B,

According to right hand rule the directions of B, and B, are opposite to each other. Hence
the resultant magnetic field at O will be zero.
4.5 Ampere’s Circuital Law

We have obtained line integration in the case of electric field. Same can be done for
magnetic field. Consider electric currents I, 1, 13, I, I5 and 16 as shown in figure 4.5. All these
currents produce magnetic field in the region arround electric currents. A plane which is not
necessarily horizontal is shown in the Figure. An arbitrary closed curve is also shown on it.

Now let us take a line integration of magnetic field on this loop.
You must be remembering that we have taken a ¥ b R PUAES T 7
sign convention for electric charges (+) while considering : ' |

surface integral in case of Gauss’ theorem for electric \ ’ ’! /
field. In the same way we will have to decide a sign
convention for the electric currents enclosed by the
loop. One of the methods used in practice is as under.
Arrange a right hand screw perpendicular to the
plane containing closed loop and rotate it in direction of
/0l

e

vector line elements taken for line integration. Electric
currents in the direction of advancement of the screw
are considered positive and the currents in the opposite  Figure 4.5 Ampere’s Circuital Law
direction are considered negative.

Now, using the above mentioned sign convention in figure 4.5, we have I, and I, negative
and I, and I, positive.

Hence the algebraic sum of all these current will be
-1, =2

Here do not worry about the currents which are not enclosed by the closed loop selected.

L+1 -1

The statement of Ampere’s circuital Law is as under :
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“The line integral of magnetic induction over a closed loop in a magnetic field is equal to
the product of algebraic sum of electric currents enclosed by the loop and the magnetic

permeability.”
The Law can be represented mathematically as
- -
$B.al = 3l (4.5.1)

The magnetic induction in the above equation is due to all the currents (Il, 12, 13, 14, Is’ Io
in our case). Whereas the algebraic sum of currents on the right hand side is only of those
currents which are enclosed by the closed loop. It is important to note that Ampere’s Law is
true only for steady currents.

Just as in case of static electricity, the electric field due to a symmetric charge distribution
can be determined using Gauss’ Law, the intensity of magnetic field due to symmetric current
distributions can be determined in the same manner using Ampere’s Law.

Gauss’ Law for the electric field and Ampere’s Law for the magnetic field have their own
importance in physics. Gauss’ Law and Ampere’s Law form two basic pillars out of four pillars
of Maxwell’s electromagnetic theory. Third pillar is the fact that magnetic field lines form
closed loops and the fourth is the concept of displacement current.

Here note that Ampere’s Law is the integral form of Biot—Savart’s Law and Gauss’ Law
is the integral form of Coulomb’s Law. These representations have become very fruitful in
physics.

4.5.1 Uses of Ampere’s Circuital Law

(1) To Find Magnetic Field Due to a Very Long Straight Conductor Carrying
Electric Current, Using Ampere’s Law

We have seen that magnetic field produced due to
symmetric distribution of electric currents can easily be
determined by Ampere’s Law. Consider a very long (in
principle infinitely long) straight conductor carrying electric

current I as shown in figure 4.6.

Where is the symmetry in this case ? This can be
understood as follows.

First of all see that uniform electric current
I is flowing through the whole conductor. Now keep

the wire between your two palms and rotate like a

churn. This does not make any change in the magnetic
field produced by the wire (electric current).

Now consider points like P, Q and R located at same
perpendicular distance r from the wire. Both the ends of
the wire are at infinite distance. Since the two ends of

\-_____-/ the wire are at infinite distance, these points P, Q and R
Figure 4.6 Magnetic Field Produced by

Straight Conductor Carrying Electric ) ) ) )
Current wire and in this sense they are equivalent.

can be considered at equal distance from the ends of the

This discussion of symmetry shows that the magnetic field at points like P, Q and R must
be same. Moreover it is also clear from the fact of rotating the wire like churn that the
magnetic field at all the points on the circumference of a circle of radius OQ = r with O at
centre must also be the same. In this case we have to find magnetic field at point Q using
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Ampere’s Law. For this consider circle of radius OQ = r (amperean loop 1) as shown figure

4.6 which is perpendicular to the wire as a closed loop. Such a circle and line elements ((ﬁ )

over its circumference are shown in Figure 4.6.

Suppose the magnetic field of all such element is B. Using this fact in the equation

representing Ampere’s Law.

- =
§ B.dl = 2, we get

$ B.dl cos® = U

As B and 4l are in the same direction at every element,

cos® = cosO = 1
s $Budl = pl
As B 1s constant

Bfdl = p

Here $dl = dl circumference of the circle with radius r = 2r

o BE2Rr) = ol

Ko L

2n R

Here current is positive as per our sign convention.
from equation (4.5.2)

B o % (outside the conductor)

* B =

Magnetic Field Inside the conductor : Now as
shown in the figure 4.6 radius of the wire is a and we

want to find magnetic field at a perpendicular distance r,
from its axis inside the wire that is r, < a. Consider

circle with radius r, as amperean loop 2 as shown in

figure 4.6 (which is around the axis inside the wire). If
current enclosed by this loop is I, then

2
i

B D S S
Ie = (1‘[(12 ]Tcrl = Iaz
Using Ampere’s Law
2
ul
B(2nr) = LLO?I

B = Hol r
T 2md? )

4.5.2)

BoufF=—===

(1iH ¥4

Fo—

Figure 4.6 Magnetic Field B
at distance r from the Centre
of the Wire

(4.5.3)

Now representing r, by r that is for r < a (for magnetic field inside the conductor)

B o< r

Hence in the form of common symbol r the above facts can be represented as follows

(i) If r > a, then B o 1

(i) If r < a, then B o r
(ii1) At r = a B is maximum.

These facts are shown in the from of plot of B — r in figure 4.7.
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For Conductor of Finite Length : To find the

>
magnetic field B produced due to the conductor with

p N finite length carrying current consider figure 4.8.
P ..":.I"\\ -
A — L
| O+—nx—+ldvi B .
= L, el L: - In this case following formula for B can be
Figure 4.8 Magnetic Field Due to
Current Carrying Conductor of Finite obtained using Biot—Savart Law.
Length
= L0 L (5ing + sin®1; (4.5.4)
4y 1 2

Where y is perpendicular distance of the given point P from the wire, 8, and O, are the
angles subtended with the perpendicular drawn on the wire from the given point by the lines
joining given point and the ends of the wire (See Figure 4.8)

(2) Solenoid : As shown in the Figure 4.9 two identical rings carrying same current are
placed closed to each other co-axially.

It is obvious from the Figure that the magnetic field
produce due to the rings are in the same direction on their
common axes. Moreover the lines close to the axis are

r_ -— almost parallel to the axis and in the same direction. Thus if
L_ B * a number of such rings (in principle of infinite number) are
! - kept very close to each other and current is passed in the

I i\ T,
same direction, it is found that inside the region covered by

the rings, the field lines are arranged at equal distance from
each other obout the axis i.e. magnetic field is uniform. But
Figure 4.9 the magnetic field due to two consecutive
rings are in mutually opposite directions outside the rings, so they multiply each other. Hence,
magnetic field in the outer region near the rings is zero. Solenoid is a device in which this
situation is realized.
A helical coil consisting of closely wound turns of insulated conducting wire is
called a solenoid
In practice long and short solenoids are used. When length of a solenoid is very large
as compared to its radius, the solenoid is called long solenoid.
To find magnetic field inside a long solenoid using Ampere’s Circuital Law.
Pe—riI/—+Q Figure 4.10 shows a cross-section of a long solenoid
Y = taken with plane of the page of the book. Symbol (X)
«|e]s]<]«]s]<]<]+  shows the direction of currents going inside the plane of
r- m— 7 / the page and symbol () shows the directions of the
current coming out of the plane of the page.
Suppose we want to find the magnetic field at point S

\ lying inside the solenoid. Considering a rectangular loop of
XXX x[xTx]x]x]x|

A T-T7]

4

[r=

length [, PQRS as shown in the Figure 4.10 as Amperean

Figure 4.10 Solenoid loop, we will take line integral B over the loop.

S R Q P
© $B.dl = [Bal + [Bai + [B-d + [B-dl
P S R Q
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From the figure 4.10 it is clear that the magnetic field on part PQ of the loop will be zero

P,
as it is lying outside the solenoid and hence jB'dl =0
Q
Moreover, some part of sides QR and SP is outside the solenoid and the part which is
. . . . . . Q% - S% -
inside is perpendicular to the magnetic field, therefore IB-dl = jB-dl = 0.
R P
- = R R
.. $B.dl = [Bdlcost0’= B[dl = BI (4.5.5)
S S

Now suppose that the number turns per unit length of the solenoid is 7n. Therefore, the
number of turns passing through the Amperean loop is nl. Current passing through each turn
is I, so total current passing through the loop is XI = nll.

From Ampere’s Circuital Law

- -
$B.al = ppnll
.. Bl = uonll (from equation 4.5.5)
s B = gl (4.5.6)
This method can be used only for a long solenoid because only in case of a long solenoid,
all the points inside the solenoid can be considered equivalent and magnetic field inside the

solenoid as uniform. In the region outside the solenoid in the vicinity of it is zero. This method
should not be used for a solenoid of finite length.

For Solenoid of Finite Length : For solenoid of

finite length magnetic field inside of it can be determined J=]=]=]=f=f=[=]"=]
A " e

using Biot—Savart’s Law. For this consider figure 4.11. s ;
;Y'U'."‘*zf?‘ |

Formula for the magnetic field inside the solenoid of T -
finite length is as under. ’ | = &
ponl . . = =
B = ——(sinoi, + sino,) (4.5.7) lxxfxIxIx{x{x|x]x
Here o, and o, are the angles subtended by two Figure 4.11 Solenoid of Finite
ends of the solenoid with normal drawn at point P Length
respectively.

Toroid : If a solenoid is bent in the form of a circle and its two ends are joined
with each other then the device is called a toroid.

A toroid can also be prepared by closely winding an
insulated conducting wire arround non-conducting hollow ring.
(In short, the shape of a toroid is the same as that of an
inflated tube, also called doughnut shape.) The magnetic field
produced inside the toroid carrying electric current can be
obtained using Ampere’s Circuital Law.

Suppose we want to find the magnetic field at a point P inside
the toroid which is at a distance r from its centre as shown in the
figure 4.12. If we consider a circle of radius r with its centre at
O as an Amperean loop from the symmetry it is clear that the
magnitude of the magnetic field at every point on the loop is same Figure 4.12 Toroid
and directed towards the tangent to the circle. Therefore,
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$B.dl = $Bdl = B$dl = BQmr) (4.5.8)
If the total number of turns is N and current passing is I, the total current passing through
the said loop must be NI. From Ampere’s Circuital Law,
- -
$ B.dl = p NI (4.5.9)
Comparing equations (4.5.8) and (4.5.9)
B(2nr) = p NI

B = M1 NI 4.5.10
= o Mo (4.5.10)

Here, n = %r the number of turns per unit length of the toroid. This is the equation of

magnetic field produced inside the toroid. This magnetic field is uniform at each point inside the
toroid.

In an ideal toroid, the turns are completely circular. In such a toroid magnetic field the
inside the toroid is uniform and outside the toroid is zero. But in the toroid used in practice,
the will is helical and hence, a small magnetic field also exist outside the toroid.

For nuclear fusion, the device Tokamak is used for the confinement of plasma. Toroid is
an important component of Tokamak.

4.6 Force on a Current Carrying Wire Placed in a Magnetic Field

Within week of the publicity of the news of Oersted’s observation scientist Ampere made
another observation. In this observation he showed that “Two parallel wires placed near each
other exert an attractive force if they are carrying currents in the same direction, and
exert a repulsive force if they are carrying currents in the opposite directions.”

We have seen that magnetic field is created around the wire carrying electric current. Now,
if another wire carrying current is placed in its neighbourhood (i.e. second wire carrying current
is placed in the magnetic field produced by the current in the first wire) then the force acts
on the other wire due to magnetic field produced by current in the first wire. In the same
manner the first wire is lying in the magnetic field produced by the current in the other wire.
Hence the force acts on the first wire due to the magnetic field produced by the current in
the other wire. This is the magnetic force between two wires.

This interaction can schematically be represented as follows.

Current in the] — M  fiel Current in the
first wire o Magneticfield \second wire

Thus in other words the force acts between the two wires (carrying current) is due to
magnetic field.
To find this force acting between two wires, one

must know, the force acting on a wire currying a
—
F . current placed in magnetic field. The Law giving this
‘\’/ . force was established by Ampere through the
i /‘ . 1 experimental studies is as under :
4 . .
The force acting on a current element Idl due to the
il
'l . =
magnetic induction B is given by
Figure 4.13

- - -
dF =1dl X B (4.6.1)
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If a straight wire of length [ carrying current I is placed in uniform magnetic field ﬁ, the
force acting on the wire can be given by

F =17 xB (4.6.2)

Such an arrangement is shown in the Figure 4.13.

The direction of force can be determined using the right hand rule for vector product.

4.6.1 The Force between Two parallel Current Carrying Wires

Consider two very long conducting wires placed parallel 47
to each other along X-axis, separated by a distance y and
carrying currents I, and I, in the same direction (See figure 3 I
4.14) i

Magnetic field at a distance y from first conductor

carrying current I, is

—— e ———

I - - ¥
B o= 0.l 4.63) © o :

B, 2y

The strength of this field is same at all points on the
second wire carrying current I, and directed along Z-axis.
Therefore, the force acting on the second wire over its
length [ will be

¥

Figure 4.14
_)
E, = 127 X El (From equation 4.6.2)

substituting value of B, from equation (4.4.3) in the above equation
g 1 q q

1_3; = IIIZ;TOylf X k  (As current I, being along the X-axis)
B o= Mo L.
b=/ (4.6.4)

5
Above equation shows that the force E, acts along negative Y-direction.

- . . . . . .
Now the force F acting on the first wire carrying current I, can be obtained in the same
manner which is as under :

T = Mo LB -
B el (4.6.5)

The above equation shows that the force F, acting on the first wire is in positive y
direction.

- -
Thus F = —F, (4.6.6)

This fact shows that force acting between indicates attraction takes place between them.

If the currents are flowing in the mutually opposite directions in the two wires then
repulsion is produced between them.

From equation (4.6.6) it is obvious that here also Newton’s third Law is obeyed.

Definition of Ampere :

In equation (4.6.4) if we take

I =1L,=1A, y=1mand /= 1m

2 _ Ko 4rx10” _ 7
IFl= 3 = 223 =2x 107N (4.6.7)
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Using this fact definition of SI unit of 1 ampere current is given as under :
“When the magnetic force acting per metre length in two infinitely long wires
placed parallel to each other at a distance of 1 meter in vacuum, carrying identical

current is 2 X 107 N, the current passing through each wire is 1 ampere.”
Ilustration 5 : As shown in the figure very long conducting wire carrying current I, is

arranged in y direction. Another conducting wire of length [ carrying current I, is placed on

X-axis at a distance from this wire. Find the torque acting on this wire with respect to point O.
Solution : The force acting on a current element Izdx located at a distance x from O is,

N
dF¥ = Ldxi X B
Ay
where, ﬁ = HOI( k)
"
! (the magnetic field due to a very long conductor)
e— ! e { > 5 . uol, .
(o ) PO— - | > > X .dF = IZXm X % (—k)
> 1
7 3 dx &
poljydx
2mx J
. The torque acting on this element with respect to O is,
P N A LLdx .
dt = x; X dF = xi Houo®™ j :uomdxk
2TUC 2n

Total torque acting on this coil can be obtained by taking integration of this equation
between x = a to x = a + [,

7= Bolly a+ldk = 12[]‘“’A = 1112[a+l—a]k
T ' N T 2

- uOIIl £
T 2nm

Ilustration 6 : As shown in the figure, a straight wire PQ of length 2 m carrying 4A
current is placed parallel to a very long wire at a distance of 2m. Find the force acting on wire
PQ if the current passing through the long wire is also 4A.

Solution : According to Newton’s 3rd Law of motion, the force exerted by the smaller
wire on the longer wire is the same as the force exerted by the long wire on the smaller one.
Hence, we will find the force acting on the smaller wire.

Suppose magnetic field on the smaller wire due to

N
;=44 T 12794 the longer wire is B
B o= bl ()
fe————— v =d —————| I a 2my

5
where 4 is the unit vector in the direction of B. (1)
Now force on the longer wire is,

P
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“IFI=1B (+ 7 L B)
Using the equation (1),
S Linl,

2my

_ 4x2x4x3.14x10”" x4
2x3.14x4

~ IFl =16 x 107 N
This force produced here is attractive.
Ilustration 7 : A wire carrying electric current I is placed on the plane of paper. A

magnetic field of induction B is applied in a direction going into the plane of paper normally.
Find the force acting on the wire.

X X X x X X

A straight line joining A, and B, which is not a
part of the wire, of length 1 m is shown in the figure.

Solution : The force acting on a current element

% . . —> .
Idi due to the magnetic field B is,

- - -
dF =1dl X B
». The total force acting on the wire is,

5
F = jlcﬁ X B (Here integration is taken over the whole length of the wire.) Here, n

is the number of (free) charge carriers per unit volume of the conductor.

F :I[jfz]x B
[

But, [¢ = AB, = la ( AB, = Im)

N
where, 7 = A B, the unit vector in the dirction of

F=1axB = IF| =IB
4.7 Force on an Electric Charge Moving in a Magnetic Field and Lorentz Force

In Chapter-3 we studied that the current I flowing through a cross section A of a
conductor is

I = nAvg
Here g = Charge on the positively charged particle.
n = number of (free) charge carrier per unit volume of the conductor

v, = drift velocity

. ldl = anvdcﬁ = anv: dl (v v, and dl are in the same direction)

Magnetic Effects of Electric Current - 151



When this conductor is placed in a magnetic field of intensity ﬁ, the force acting on
current element Id/ is given by

- - -

dF = 1dl X B

dF = qnAdl(v, X B) (4.7.1)
But nAdl = total number of charged particle in current element
. the magnetic force acting on a single particle of charge g will be given by

- - =
E _dF _ qnAdl(v;xB)
Mo nAdl T nAdl
- -
F, = q(v, X B) (4.7.2)
ll;:nl = Bgqv, sinB. This shows (i) if charge is stationary this force is zero (ii) moreover if

charge is moving paralel or anti-parallel to the magnetic field then also this force is zero.

5
Now, if this electric charge g is moving in the electric field of intensity E over and above

-

the magnetic field E, the force € = E-q due to electric field acts on the charge ¢. In this

circumstanes total force acting on the charge.
= - -
F=F + F
e m

-

- N -
F =¢[E + (v; X B)] (4.7.3)
Il?;l = Bgv, sin6
the force obtained by this equation is called Lorentz Force.
The magnetic force acting on a charge moving through the magnetic field is perpendicular
to the velocity of the particle, work done by the force is zero and hence its kinetic energy
remains constant. Only direction of velocity goes on changing at every instant.

The magnitude of the magnetic force depends on the velocity of the particle, hence such
a force is called velocity dependent force.

Illustration 8 : A particle having 2 C charge passes through magnetic field of 4% T and

some uniform electric field with velocity 25 j. If the Lorentz force acting on it is 4007 N find

the electric field in this region.
Solution : Lorentz force

F =¢[E + (v X B)]

-

Here, ¢ =2 C, ¥ =25 ms', B =4fT, F = 400{
. 400f =2 [E + 25@)(] X £)]

- a
= 2E + 200;
% ~
. 2E = 200:
—> a ~1
E =100 V m
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Illustration 9 : In copper there are 8 X 10% free (conducting) electrons per cubic meter.
A current copper wire having length 1 m and cross-sectional area 8 X 10 m? is placed
perpendicularly in the magnetic field of 4 X 107 T. The force acting on this wire is 8-0 X 10~

2 N. Find the drift velocity of the free electron.
Solution : Magnetic force acting on the wire is given by the formula F =10/ X B. Here

wire perpendicular to the magnetic field. IFl = I/IB where F = 8.0 X 1072 B = 4.0 X 107°T
and [ = 1m
1= F _ 8x1072
- L= 57 = 3
B/ 4x107°x1
Now I = Avdn.e
n = No. of electrons in the unit volume = 8 x 10?8
A=8x10°"m?and e = 1.6 x 107 C

1
nA.e

= 20 A.

v, =
3 20
T 8x10%x8x10°x1.6x107"°
~2x 10% m s
Ilustration 10 : Write the equation of magnetic force acting on a particle moving through
a magnetic field. Using it obtain Newton’s equation of motion and show that kinetic energy of
the particle remains constant with time.

. . = - g
Solution : E = g(v X B)

= 1953 x 107

N
dv —

5
wmg =4q(y X B)

Taking dot product  with on both the sides,

i(7 - Y)=0(Cs .y and y X B are mutually perpendicular)

L (=m?) = 0= =mv*> = constant

Ilustration 11 : Suppose a particle of mass m and charge ¢ is incident on XZ plane with
velocity v in a direction making angle 0 with a uniform magnetic field applied along X-axis according
to figure (a). Show that motion of this particle is helical and find the pitch of the path.

A ¥
Far d
’
VA
Uniform |
Magnetic :
N Pitch I I
Field B ) ¥
' !
4
Fi
O e—— s v e »X

(a) (b)
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Solution : Considering two components of velocity in XZ plane,

v, =v sinb and v = v cosd

As v_ component is in the direction of magnetic field, gv i X Bi = 0. Since this force
is zero, the particle will continue to move with constant velocity v, = v cos0 along X axis.

Now the force due to v_ component = quE X Bi = qv_B j . This force acts perpendicu-

larly to v, hence the particle will perform circular motion on YZ plane with linear velocity v,.
Now the centripetal force needed for circular motion is,
2

mv.- quB
-
;= m., _ my sinf
’ ¢B 9B
Radius of the circular path of the particle can be determined using above equation, period,
T = 2mr
vZ
. _ 2ur _ 2mm
- T = vsind ~ ¢B
The particle covers a distance of v T during the time interval equal to its period along X axis.
. N 2mmy 2 0
‘. distance travelled along X direction = qu = nm;Bcos

It is clear from this discussion that the particle moves on a helical path whose axis is along
X' direction. Here, distance v, T is called the pitch of the helix (See figure (b)).
4.8 Cyclotron

X X X X X In the study of nuclear structure very high energy
B particles are required to be Bombarded on the Nucleus. For
X 4 X this purpose the charged particles are to be accelerated. To
do so E.O. Lawrence and M. S. Livingston developed an

¥ ¥ b instrument called cyclotron.
In this instrument the force on a charged particle moving
X X X perpendicularly inside a magnetic field is being used. Hence
to understand its working we have to study the motion of a
X X ] charged particle moving perpendicularly inside a magnetic

field.

X X X X * Consider a particle with charge g, moving with velocity

Figure 4.15 oo o _ _ R .
Motion of Charged Particle v in the magnetic field of induction B as shown in the
Entering Normally in the figure 4.15.

Magnetic Field
Here the magnetic field B perpendicularly entering into the plane of paper and the electron
is maving in the plane of paper.
According to equation (4.7.2), the magnetic force on this particle is F = g(v % E))
The value of this force is gvBsin® and the direction is normal to the plane formed by

5
v and B. Here, since the particle is moving perpendicular to the magnetic field the value of

this force is gvB. It is clear that in this condition the path of the particle will be circular. Since
this force is normal to its velocity at every moment, the value of velocity will not change, only
its direction will be continuously changing. As a result it will perform circular motion. The
necessary centripetal force for this motion is the magnetic force Bgv.
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2
vB =
q r
Where m = mass of particle and r = radius of circular path.
. o, v D
- = gB — ¢B
This equation shows that the radius of the circular path of the particle is proportional to
the momentum of particle p = mv. If the momentum increases the radius of the circular path

of the particle also increases.

(4.8.1)

Here for the circular motion we can write v = rw_. w_is the angular frequency of the particle
which is called the cyclotron frequency. Substituting this value in equation (4.8.1), we get

. m(qvg;r)

e = B (4.8.2)
o f = 4B

A (4.8.3)

This f. is called cyclotron frequency.

Here, it is clear that the angular frequency of the particle w_ does not depend on its momentum.
Hence on increasing the linear momentum of the particle, the radius of its cercular path definitely

increases but the frequency w. does not change. This fact is used in the design of a cyclotron.
A.C.

(a) Side View (b) Top View
Figure 4.16 Schematic Diagram of Cyclotorn

Construction : Two hollow matallic boxes of D-shape are kept in front of each other
with their diameters facing each other and with a small gap between them as shown in the
figure 4.16. Two strong electromagnets are kept in such a way that a uniform magnetic field
is developed in the space enveloped by the two boxes. These two boxes are called Dees as
they are D-shaped. An A.C. of high frequency is applied between the two Dees. This device
is then kept in an evacuated chamber in order to avoid the possible collision of charged particle
with the air molecules.

Working : Suppose a charged particle is released from the centre P of the gap between
the Dees of time ¢ = 0. Exactly at the same time suppose one of the Dees is at negative
potential. If the particle is positively charged, it gets attracted towards this Dee. Now as
a uniform magnetic field is existing in the space between the Dees, the charged particle
performs circular motion in the gap and enters the magnetic field in the Dees perpendicularly
with a certain momentum. Now there is no electric field in the Dees, hence the particle moves
on a circular path of radius depending on its momentum and comes out of the Dee after
completing a half circle.

Now, if the opposite Dee becomes negative at the moment at which the particle emerges
from one Dee the particle gains momentum due to electric field while passing through the gap
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before entering the other Dee. It moves in the other Dee on a circular path of larger radius.
When this particle emerges out from the second Dee, if the opposit Dee acquires negative
potential, the particle gets even more momentum and moves on a circular path of even greater
radius in this Dee.

If this process is repeated the radius of circular path goes on increasing but the frequency

w, remains constant. To make this possible the frequency of A.C. voltage (fAC) should be equal

to the frequency of revolution fC. (Here w. = 2mf.). This is nothing but resonance.

In this manner the charged particle goes on gaining energy which becomes maximum on
reaching the circumference of the Dee.

For bambarding this charged particle on some target it should be brought out of the Dee.
For this when the particle is on the edge, it is brought out of the Dee by deflecting with the
help of another magnetic field and allowed to hit the nuclei of the atoms of target.

Here, we have discussed about accelerating positively charged particle (e.g. proton, positive
ions), such accelerated particles are used in the study of nuclear reactions, preparation of
artificial radioactive substances, treatment of cancer and ion implantation in solids.

Limitations : According to the theory of relativity as the velocity of particle approaches
that of light, its mass goes on increasing. In this situation the condition of resonance (f,. = f.)
is not satisfied.

To accelerate very light particles like electron, the frequency of A.C. is required to be very
high (of the order of GHz)

Moreover, the size of Dees is also large. It is difficult to maintain a uniform magnetic field
over a large region. Hence accelerators like synchrotron are developed.

4.9 Torque Acting on a Rectangular Current Carrying Coil Kept in Uniform Magnetic Field

Consider a rectangular coil of length QR = [
and width PQ = b carrying Current I as shown in

figure 4.11. Here, direction of the magnetic field B
X is taken along X-axis.

-

B = Bi

The force acting on the element constituted

by side PQ of the coil = 15 .

Therefore force acting on this element

N
Figure 4.17 I:)l =15 X B. (Positive Y-direction). Similarly

. . .2 ~ b . .
the force acting on the element formed by side RS is F' =15 X B (negative Y-direction).

- - . . o .
Here, forces E and F' are equal in magnitude, opposite in direction and collinear hence,
they cancel each other.

Now consider the element (QR)I = —I/j. The force acting on it
s ~ - . ~ ~ ~

F, =-1lj X Bi =-1IB (j X i) =1Bk (4.9.1)
is along positive Z-direction.

Similarly the force acting on the element (SP) I = 1/ is

B' =1 x Bi =-IB& (4.9.2)

is in negative Z-direction.
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Equations (4.9.1) and (4.9.2) show that I1_3>2I = IF2 |

It is also clear from the figure 4.17 that they are opposite in direction. But they are non-
collinear. So they constitute a torque (couple)

Viewing the coil from above (in negative Y—direction), F 1_:)2', X-axis and vector A

2 b
appear as shown in figure 4.18. Here A is the vector representing the area of the plane of

the coil which makes an angle 0 with X-axis.
Thus,
Torque acting on coil = (magnitude of a force) (Perpendicular distance between two forces)
The perpendicular distance between two forces is (See Figure 4.18)

M'N' = Z%COS(% — 0) = bsind (4.9.3)
- - P! .
*. Torque I t| = |F2| M'N") = (I/B)(bsin0) (4.9.4)
—
. X
| 1 = IABsin®
Where [b = A is the area of the coil. N
For coil having N turns, ae

Figure 4.18 Torque Acting on
Rectangular Coil
Taking area A of the coil in the vector form, equation (4.9.5) can be written in the vector

form as
%
T

|71 = NIAB sin® (4.9.5)

- -
= NIA X B (4.9.6)

The vector quantity NIA is called “magnetic moment” linked with the coil and denoted by (E)

- - -

T = p X B (4.9.7)
equation (4.9.7) is valid for any shape of the coil.

N
Direction of p can be determined using right hand screw rule. Keep a right hand screw
perpendicular to the plane of the coil and rotate it in the direction of current, the direction in

. . . . . %
which screw advances shifts gives the direction of p .
4.10 Galvanometer
Galvanometer is a device used to detect and measure small electric currents.

Pointer

Cylinder

Coil / . Radial Magnetic Frame
Spring

Soft Iron Field
Cylinder
(a) (b) [For Information Only]
Figure 4.19 Construction of Galvanometer
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In galvanometer, a coil of thin insulated copper wire is wound on a light rectangular (non-
magnetic) frame. The frame is pivoted between two almost frictionless pivots and placed
between two cylindrical poles of a permanent magnet so that it can freely move in the region
between the poles. A small soft iron cylindrical core is placed at the axis of the coil (free from
coil) so that uniform radial magnetic field is produced. When current is passed through the coil
a torque acts on it and deflected. The steady deflection coil is indicated by a pointer attached
with it. Knowing the position of the pointer on the scale current can be known.

Principle and Working : If the area vector of the coil marks an angle © with the
magnetic field, from equation (4.9.5) torque acting on the coil.

T = NIABsin® (where N = number of turns in the coil) (4.10.1)

(For Information Only : In the present case magnetic field is radial)

Position (1) Position (2)
Figure 4.20

Figure 4.10 represent figure 4.20 the radially uniform magnetic field obtained in presence
of a cylinder of soft iron. For convenience only a few magnetic field lines are shown here.
When the coil is in position 1, the line JK is the only effective line. In this case the angle

- -
between A and B is 90°.

Similarly for position 2 of the coil, the line LM becomes effective. In this case also the

angle between A and B is 90°. Thus for any position of the coil the angle between A and
-
B is 90°.

Due to the raidal field, the angle between A and B will always be 90°.

. T = NIAB (4.10.2)

which is called deflecting torque. (The torque due to which the coil is deflected.)

Due to the deflection of the coil, the restoring torque is produced in the springs which is
directly proportional to the deflection of the coil.

. T (restoring) = ko (4.10.3)

Here k = effective torsional constant of the springs.

If the coil becomes steady after a deflection ¢,

Deflecting torque = Restoring torque. NIAB = k¢

D= [ﬁ]q, (4.10.4)

vl 0 (4.10.5)

The scale of a galvanometer can be appropriately calibrated to measure [ by
knowing ¢.

From equation (4.10.5)

% _ NZ\B (4.10.6)
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Where % is called current sensitivety(s) of the galvanometer.

Thus, deflection produced per unit current is called current sensitivity of the galvanometer
one of the ways to increase the current sensitivity of the galvanometer is to use stronger

magnetic field B.

To measure very weak currents of the order of 107! A, the galvanometer with coil
suspended by an elastic fibre between magnetic poles are used.

4.10.1 Measurement of Electric Current and Potential Difference

We often need to measure the parameters related to a circuit component like the electric
current passing through it and the potential difference across its two ends. The instruments to
measure these quantities are called an ammeter and a voltmeter respectively. The basic
instrument to measure electric current or the voltage is the galvanometer.

4.10.1 (a) Ammeter : A galvanometer has to be joined in series with the component
through which the electric current is to be measured. If the potential difference between the
two ends of a component is to be measured, the galvanometer has to be joined in parallel
between these two ends.

In practice if a galvanometer is directly used as a current—meter, two difficulties arise.

(I) To measure the electric current passing through a ;'-
+ 1=
L

{\
component of a circuit, the current—meter is to be joined \*/
in series with that component. As for example, we want | Y

to measure current passing through the resistance R in a

circuit shown in the figure 4.21(a). For this purpose, W
current meter is joined in series with resistance R, as R

shown in the figure 4.21(b). In such a connection the e

resistance G of the galvanometer is added in the circuit.
As the total resistance of the circuit is changed the value [ A
of current to be measured itself is changed. Thus the true ~
value of current is not obtained. This fact indicates that ) VAAATTT

the resistance of current meter should be as small as : (b) R
Figure 4.21

possible (in principle zero)

(2) Moreover, the moving coil galvanometers are very sensitive. Even when a small fraction
of one ampere current (of the order of 107® A) passes through it, it shows full scale deflection.

The electric current, for which the galvanometer shows full scale deflection, is called the
current capacity of galvanometer (I,). If the galvanometer is used to measure a current greater
than its range (current capacity), it is likely to be damaged.

Moreover due to larger current passing through thin copper wire of its coil, large quantity
of heat is produced according to I’R¢ and hence it is likely to be burnt.

In order to remove the above mentioned difficulties a resistance of proper small value is
joined in parallel to the coil of galvanometer. This resistance is called a Shunt. As the value
of shunt is very much smaller than the resistance of galvanometer (G), most of the current
passes through the shunt and the galvanometer is protected against the damage.

Moreover the shunt and the resistance of galvanometer being in parallel their equivalent
resistance becomes even smaller than the value of shunt. Thus after joining the shunt the
resistance of the current meter becomes very small. Hence both of the above mentioned
difficulties are removed.

Known currents are passed through the instrument prepared after joining the shunt and its
scale is calibrated in ampere, milliampere or microampere.
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The instrument thus prepared is called ammeter, milliammetre or microammeter respectively.
For this purpose the proper value of shunt is obtained as follows :

Formula for shunt : Suppose a galvanometer having resistance G and current capacity I
is to be converted into an ammeter which can measure a maximum current I. For this the value
of required shunt is suppose S. Here the shunt should be so chosen that out of current I, only
I, current passes through the galvanometer and the remaining I = I — I, current passes
through the shunt. This situation is shown in the figure 4.22.

Using Krichoff’s first Law, at junction A,

I =1, + [ (4.10.7)
G Using Kirchoff’s second Law on ASBGA path,
;E & _1:!{] @__’_H_..’._ - IGG + ISS = O
GI
1's | SS = I—G

From equation 4.10.7, I, = T — I

v‘v;y\r
- Gl
Figure 4.22 S = I_IG (4.10.8)
G

This is the formula for the required shunt. It is clear from this that in order to make the
range of ammeter higher and higher the value of the required shunt is smaller and smaller.

To make the range of ammeter n times, the required shunt will be S = which you

G
n—1"
may varify for yourself.

4.10.1 (b) Voltmeter : The instrument to measure the potential difference (also called
valtage) between the two ends of component in a circuit, is called voltmeter. For this purpose
the voltmeter is joined in parallel to that component.

Suppose the voltage across the two ends of the resistance R shown in the figure 4.23(a)
is to be measured. For this if a galvanometer with resistance G and current capacity I, is used,
we find the following difficulties. On joining the galvanometer as shown in the figure 4.23(b),
the total resistance of circuit becomes

RG

' —_—
R = Rl + R+G (4.10.9)
v |= .5
I £ ' =
1! W/
G
=%, +r #y
Ry
- I'R
i 1] = . S T
| 4 ]
R i )
LE
(a) Figure 4.23 (b)

As a result, after joining the galvanometer, the resistance of circuit change and the current
passing through R also changes. Thus value of potential difference = IR (which is to be
measured), between two ends of the resistance R, also changes.

If the value of G is very high, then in R + G; neglecting R as compared to G,

RG
e =~ R +R (4.10.10)
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In this condition the resistance of the circuit is not appreciably changed and since value of
G is greater, most of the current passes through R and hence the value of IR is almost
maintained.

The above discussion shows that the resistance of the instrument measuring the electric
potential difference should be as great as possible (in principle infinite). Thus by joining a
proper greater resistance in series with the galvanometer, it can be converted into a voltmeter.
Here since the resistane is very large, the current passing through the galvanometer is very
small and it is not likely to be damaged.

The maximum voltage that can be measured with a galvanometer (I;G) is called its (voltage
capacity).

Formula for Series Resistance : Suppose the resistance of a galvanometer is G and its
current capacity is I,. Hence its voltage capacity will be I,G. This galvanometer is to be
converted into a voltmeter which can measure a maximum potential difference of V volt. For
this the required series resistance is suppose R.. In figure 4.24 if the potential difference
between A and B is V, then by joining the galvanometer and R, between these points, the
galvanometer shows full scale deflection that is the current passing through it will be I .. From
the Figure,

— Al
I,G + IRy =V “ @) S

% vV 3

v i :
“Ry=71. -G (4.10.11) Figure 4.24
G

By joining a resistance given by the above formula in series with the given galvanometer,
and then by properly calibrating the scale of galvanometer, the voltmeter is prepared. From
equation 4.10.11, it is clear that in order to make the range of voltmeter greater and greater

the larger and larger value of series resistance (Rg) should be taken.

In order to make the voltage capacity of voltmeter, n times, the required series resistance
will be R¢ = (n — 1)G; which you may varify.

By dividing both the sides of equation 4.10.6 by the resistance of voltmeter R.

& _ NAB 1
IR = k R
& _ NAB
V kR (4.10.12)
o . .
Here, v s called the voltage sensitivity (S,) of voltmeter.

lustration 12 : There are 21 marks (zero to 20) on the dial of a galvanometer, that is
there are 20 divisious. On passing 10 LA current through it, it shows a deflection of 1 division.
Its resistance is 20 €2 (a). How can it be converted into an ammeter which can measure 1
A current ? (b) How can the original galvanometer be converted into a voltmeter which can
measure a potential difference of 1 V 7 Also find the effective resistance of both of the above
mentioned meters.

Solution : (a) When a current of 10 LA passes through the galvanometer, its pointer shows
a deflection of 1 division. There are 20 divisions in this galvanometer.

The maximum current which can be measured by it (current capacity)

I, =10 x 107° X 20 = 200 x 107°A.

For ammeter, the required shunt to be joined in parallel to galvanometer is
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I, = 200 X 10°A = 2 x 107*A

_ 20%200x107°
10000107 —(2x107%

G =120 Q

- 20x2x10~* I=1A=10000 X 10A
©(10000x107)-(2x107") T B

— 40 _
= 9908 ~ 0.004 Q

Thus to convert this galvanometer into an ammeter which can measure 1 A current, a shunt
of 0.004 € should be joined.

The effective resistance of this ammeter will be G' = GS_ _ 20x0004 0.004 Q.

G+S 20+0.004

(b) For Voltmeter : In order to convert the galvanometer into a voltmeter, the required
series resistance is

\%
RS: . -G Here, V =1 volt
G
=2 x 10*A
= 1 - 20
~ 2ax107* G =20 Q
= 0.5 x 10* — 20
= 5000 — 20
= 4980 Q

In order to convert this galvanometer into a voltmeter which can measure 1 volt, a series
resistance of 4920 should be joined with it.

The effective resistance of this voltmeter will be R'S = RS + G = 4980 + 20 = 5000 Q.
(- Ry and G are in series)

SUMMARY

1. Qersted’s Observation : “When electric current is passed through a conducting wire
kept parallel to and below the magnetic needle, the magnetic needle is deflected.”

iR
2. Biot-Savart’s Law : The magnetic field due to a current element Idl at a point with
position vector  with respect to it, is given by

S Wy 1dixF
_ Mo ldix#
(= 4 2

Since such elements are continuously distributed in the entire conducting wire, the
magnetic field due to such a wire can be written in the form of a line integral as

1 A
B = [dB = ¢ [diX?

or B = —

Here, the line integral is on the entire circuit made up with the conducting wire.
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3. The magnetic field due to a circular coil (ring) of N turns, radius a and carrying current
I at a point on its axis at a distance x from its centre is

For magnetic field at the centre of the coil (ring),

1o NI
2a

taking x = 0, B(centre) =

For a point very much away from the centre,

taking x >> a;

2

p,Nla

B(x) = =
2x

4. Ampere’s Circuital Law : “The line integral of magnetic field on a closed curve (loop)
in a magnetic field, is equal to the product of the algebraic sum of the electric currents
enclosed by that closed curve and the permeability of vacuum.”

In the form of an equation this Law can be written as under :

$ B.dl = W XL

5. If current I is passed through a very long straight wire, the magnetic field at a point at
normal distance r from the wire is,

= Rt
B_an

6. The magnetic field at a point on the axis of a very long solenoid carrying current is B
= il
Where n = number of turns per unit length of solenoid.

7. The force on a conducting wire of length [ and carrying current I placed in a magnetic
field B,is F =17 X B
The direction of this force can be found by the right hand screw rule for the vector

product.

LI,/
8. The force between two very long parallel current carrying conductors is F = ;—g %,

Where y = perpendicular distance between two wires. If the currents in the wires are
in mutually opposite directions, the force is repulsive and if the currents are in the same
direction, the force is attractive.

9. The magnetic force on a charge g, moving with velocity , in a magnetic field
- -
B is F = q(v X B)
m

The force on the charge g in an electric field E s F = qE
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10.

11.

12.

The force on the charge in the region where both the fields are present

=
simultaneously, is F = q[E + (j X B)], which is called the Lorentz force.
Cyclotron is the instrument to accelerate the charged particles. The radius of the circular
path of the charged particle moving in it, is

my o )
r= By which is dependent on its momentum.

The angular frequency w of this particle is called the cyclotron frequency (w,)

_ 4B _ 4B . -
We = m Ol'fc = 2m (. Weo = Zﬂ:fc)

.

The torque acting on a current carrying coil suspended in a uniform magnetic field is =
— -

= NIA X B

= = g g g

p = NIA is called the magnetic moment of the coil.

T =u XxB
For measuring very small electric currents galvanometer is used. In a moving and pivoted
coil galvanometer, T = NIAB. Due to this the coil is diflected and springs attached with
it are twisted. Hence restoring torque is produced. The restoring torque is T = k¢.
In equilibrium condition.

k¢ = NIBA
_ _k .
..I—NBAq) ST e B
The small resistance joined in parallel to a galvanometer to convert it into an ammeter
GI,
is called a shunt. Its formula is S = -1 -
G
To convert a galvanometer into a voltmeter a resistance of a high value is joined in series
with it. The formula to find this series resistance Rs is R¢ = Il - G.
G
EXERCISE

For the following statements choose the correct option from the given options

1.

Two concentric rings are kept in the same plane. Number of turns in both the rings is
20. Their radii are 40 cm and 80 cm and they carry electric currents of 0.4 A and 0.6
A respectively, in mutually opposite directions. The magnitude of the magnetic field
produced at their centre is ...... T.

(A) 4y, (B) 24, © Ly, (D) M,

A particle of mass m has an electric charge g. This particle is accelerated through a potential
difference V and then entered normally in a uniform magnetic field B. It performs a circular

motion of radius R. The ratio of its charge to the mass (%) 1S = . [[%) is also called
specific charge.]

2V \Y VB mV
(A) FR2 B) 7BR © 2x D) Br
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3. A proton, a deuteron ion and an O-particle of equal kinetic energy perform circular motion

normal to a uniform magnetic field B. If the radii of their paths are T Ty and 7,

respectively then..... [Here, g, = 4, m; = 2mp]
(A) Ty =1, < 1y (B)razrd>rp
(C)rOL>rd>r]7 (D)razrdzrp

4.  An electron performs circular motion of radius r, perpendicular to a uniform magnetic field
B. The kinetic energy gained by this electron in half the revolution is ..........
(A) %mvz (B) %mvz (C) zero (D) mrBev

5. As shown in the figure two very long straight wires are kept parallel to each other and
2A current is passed through them in the same direction. In this condition the force
between them is F. Now if the current in both of them is made 1 A and directions are
reversed in both, then the force between them ..........

T ST IAY 1AY
Initially Afterwards
(a) (b)
(A) will be % and attractive (B) will be % and repulsive
(C) will be g and attractive (D) will be 5 and repulsive.

6. As shown in the figure 20A, 40A and 60A currents are passing through very long straight
wires P, Q and R respectively in the directions shown by the arrows. In this condition
the direction of the resultant force on wire Q is

(A) towards left of wire Q
(B) towards right of wire Q
2{:_-".‘“L -llh_-\."i 00A
(C) normal to the plane of paper

(D) in the direction of current passing through Q.

7. As shown in the figure a circular conducting wire P Q R

carries current I. It lies in XY-plane with centre at O.

.I

The tendency of this circular loop is to
(A) contract (‘/-
0

(B) expand ' //
¥

o

(C) move towards positive X-direction

(D) move towards negative X-direction. g
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10.

11.

12.

13.

14.

15.

16.

At a place an electric field and a magnetic field are in the downward direction. There
an electron moves in the downward direction. Hence this electron .......... .
(A) will bend towards left (B) will bend towards right
(C) will gain velocity (D) will lose velocity.
Two parallel long thin wires, each carrying current 1 are kept at a separation r from each
other. Hence the magnitude of force per unit length of one wire due to the other wire
1S eeeen
2 I

Po Bl Bl Ho
&) % (B) Lo © 5% D) 5
A voltmeter of a very high resistance is joined in the circuit as shown in the figure. The
voltage shown by this voltmeter will be .......... .

. |
* 1t

1oV (A) 5V (B) 10 V

§ 1L F
(C) 2.5 V D) 75 V
10£2
WA

A particle of charge ¢ and mass m moves on a circular path of radius r in a plane inside
and normal to a uniform magnetic field B. The time taken by this particle to complete
one revolution is .......... .

2nmgq 2ngB 2nm
p” (D) By

A =

2
(B) LB (©)

A long wire carries a steady current. When it is bent in a circular form, the magnetic
field at its centre is B. Now if this wire is bent in a circular loop of n turns, what is
the magnetic field at its centre ?

(A) nB (B) n’B (C) 2nB (D) 2n’B

A conducting wire of 1 m length is used to form a circular loop. If it carries a current

of 1 ampere, its magnetic moment will be ......... Am?.

(A) 2m ®) % © = (D) 4=

When a charged particle moves in a magnetic field its kinetic energy .......... .

(A) remains constant (B) can increase

(C) can decrease (D) can increase or decrease

At each of the two ends of a rod of length 2r, a particle of mass m and charge g is
attached. If this rod is rotated about its centre with angular speed , the ratio of its
magnetic dipole moment to the total angular momentum of this particle
1S cevvene

(A) 5L ®) < (©) 4 D) L

There are 100 turns per cm length in a very long solenoid. It carries a current of 5 A.
The magnetic field at its centre on the axis is .......... T

(A) 3.14 x 102 (B) 6.28 X 1072 (C) 942 x 102 (D) 12.56 x 1072
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17.

18.

19.

20.

21.

22.

23.

24.

Two very long conducting parallel wires are separated by a distance d from each other
and equal currents are passed through them in mutually opposite directions. A particle of

charge ¢ passes through a point, at a distance% from both wires, with velocity v

perpendicularly to the plane formed by the wires. The resultant magnetic force acting on
this particle is .......... .
wolgv Wy lgv
2 ® g
A very long solenoid of length L has n layers. There are N turns in each layer. Diameter
of the solenoid is D and it carries current I. The magnetic field at the centre of the
solenoid is ..........

2u, I
(© 2L (D) zero

(A)

(A) directly propotional to D (B) inversely proportional to D.
(C) independent of D (D) directly proportional to L.
The angular speed of the charged particle is independent of .......... .
(A) its mass (B) its linear speed

(C) charge of particle (D) magnetic field.

A charged particle gains energy due to ......... .

(A) electric field (B) magnetic field

(C) both these fields (D) none of these fields.

N
A charged particle is moving with velocity 3 in a uniform magnetic field B. The
magnetic force acting on it will be maximum when .......... .

- . . .
(A) v and are in same direction

5
B
%
B

(B) v and are in opposite direction

=l

(C) v and are mutually perpendicular

(D) v and ﬁ moke an angle of 45° with each other

Equal currents are passing through two very long and straight parallel wires in mutually
opposite directions. They will .......... .

(A) attract each other (B) repel each other

(C) lean towards each other (D) neither attract nor repel each other.

A charged particle is moving in a uniform magnetic field. Then .......... .

(A) its momentum changes but kinetic energy does not change

(B) its momentum and kinetic energy both change

(C) neither the momentum nor kinetic energy changes.

(D) Kinetic energy charges but the momentum does not change.

If the speed of a changed particle moving through a magnetic field is increased, then the
radius of curvature of its trajectory will .......... .

(A) decrease (B) increase (C) not change (D) become half

ANSWERS

L(© 2 (A 3 (A 4 5 (A 6 (A
7.B) 8 (D) 9. (B) 10. (A) 1. (D) 12. (B)
13. (D) 14. (A) 15. (A) 16. (B) 17. (D) 18. (C)
19. (B) 20. (A) 21. (C) 22. (A) 23. (A) 24. (B)
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Answer the following questions in brief :

1.

Eal i

S

11.
12.
13.
14.
15.

16.

State the observation made by Oersted.

Write the statement of Biot—Savart’s Law.

Give the formula showing Ampere’s Circuital Law.

State the Law giving the direction of magnetic field due to a straight conductor carrying
current.

What is the magnitude of the magnetic field in the region near the outside of the solenoid.
State the direction of magnetic field due to current in a toroid.

State Ampere’s observation after the observation made by Oersted.

Does the angular frequency of particle depend on its momentum in cyclotron ? Yes or No ?
Can a neutron be accelerated using cyclotron ? Why ?

State the functions of electric field and magnetic field in a cyclotron.

State two limitations of cyclotorn.

What should be the resistances of an ideal ammeter and an ideal voltmeter ?

What is meant by current sensitivity of a galvanometer ?

What should be done to increase the voltage capacity of a voltmeter.

If the radius of the ring and the current through it both are doubled, what change would

occur in the magnetic field at its centre ? 5
Give the magnitude of the magnetic force on the T;
electron for the three cases of its motion shown | @ :

in the Figure.

e
g

Answer the following questions

1.
2.

-

11.

12.

13.

LR
ra

Write Biot—Savart’s Law and explain it.

Write the formula for the magnetic field at a point on the axis of a current carrying
circular ring and explain with a suitable diagram the right hand rule to find the direction
of this magnetic field.

State and explain Ampere’s Circuital Law.

Using Ampere’s Circuital Law, obtain the magnitude of magnitic field at a perpendicular
disance r due to very long staright conductor carrying current I.

Using Ampere’s circuital Law obtain the formula for the magnitude of magnetic field due
to current in a toroid.

Obtain the formula for the force of attraction between two parallal wires carrying
currents in the same direction.

Obtain the formula for the Lorentz force on a moving electric charge

Explain the working of cyclotron and obtain the formula for the cyclotron
frequency w.

With a suitable diagram explain the construction of galvanometer.

What should be d one to convert a galvanometer into an ammeter. Obtain the formula for
the shunt.

Derive an expression for the magnetic field at a point on the axis of a current carrying
circular ring.

Obtain the formula for the magnetic field produced inside a very long current carrying
solenoid uising Ampere’s Circuital Law.

Obtain the formula for the torque acting on a rectangular coil carrying current, suspended
in a uniform magnetic field.

Solve the following examples

1.

Distance between two very long parallel wires is 0.2 m. Electric currents of 4 A in one wire
and 6A in the other wire are passing in the same direction. Find the position of a point on
the perpendicular line joining the two wires at which the magnetic field intensity is zero.

[Ans : 80 mm away from the wire with 4A current and between the two wires]
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2. A very long wire is held vertical in a direction perpendicular to the horizontal component
of Earth’s magnetic field. Find the value of current to be passed through this wire so that
the resultant magnetic field at a point 10 cm away from this wire becomes zero. What
will be the magnetic induction at a point 10 cm away from the wire on the opposite side
of this point ? Horizontal component of Earth’s magnetic field H = 0.36 X 107*T,
K, = 4n X 10T m/A. [Ans. : 18 A, 0.72 X 10* T]

3. When a galvanometer with a shunt is joined in an electrical circuit 2% of the total current
passes through the galvanometer. Resistance of galvanometer is G. Find the value of shunt.

. G
[Ans. : 49]

4. Two particles of masses M, and M, and having the equal electric charge are accelerated
through equal potential difference and then move inside a uniform magnetic field, normal to it.
If the radii of their circular paths are R, and R, respectively find the ratio of their masses.

R M, R, Y
[ ns : M2 = R2 ]

5. A circular coil having N turns is made from a wire L meter long. If a current of I
ampere is passed through this coil suspended in a uniform magnetic field of B tesla, find

2
the maximum torque that can act on this coil. [Ans. : %N m]

6. A proton and a deuteronion having the same kinetic energies enter a region of uniform
magnetic field perpendicularly. Deuteron’s mass is twice that of proton. Calculate the ratio

T4

of the radii of their circular paths. [Ans. : 7 = 2]
p

7. A rectangular coil of 120 turns and an area of 10 X 10 m? is suspended in a radial magnetic
field of 45 X 10 T. If a current of 0.2 mA through the coil gives it a deflection of 36° find
the effective torsional constant for the spring system holding the coil.

[Ans. : 17.2 X 10® N m/rad]

8. Two rings X and Y are placed in such a way that their axes are along the X and the
Y axes respectively and their centres are at the origin. Both the rings X and Y have the
same radii of 3.14 cm. If the current through X and Y rings are 0.6 A and 0.8 A
respecively, find the value of the resultant magnetic field at the origin.

1, = 4m X 107'SL [Ans. : 2 X 107°T]

9. Two parallel very long straight wires carrying currents of 20 A and 30 A respectively are
at a separation of 3 m between them. If the currents are in the same direction, find the
attractive force between them per unit length. [Ans. : 4 X 10°N m™]

10. A very long straight wire carries a current of 5 A. An electron moves with a velocity
of 10° m s™' remaining parallel to the wire at a distance of 10 cm from wire in a
direction opposite to that of electric current. Find the force on this electron. (Here the
mass of electron is taken as constant) e = —1.6 X 107°C, Y, = 41 X 107'S1.

[Ans. : 16 X 107°N]

11. A current of 6 A passes through the wire shown in the Figure.
Find the magnitude of magnetic field at point C. The radius is
0.02m W, = 4m X 107T m AL

[Ans. : 1.41 X 107*T]
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5.1 Introduction

The word magnet is derived from the name of an island in Greece called Magnesia, where
magnetic ore deposits were found as early as 800 BC. Shepherds on this island complained that
the nails of their shoes were getting stuck to the ground. The tip of their staff were also
getting stuck to chunks of magnetite while they pastured their flocks. Greeks observed that the
stone of magnetite (Fe,O,) attracts the pieces of iron.

The chinese were the first to use magnetic needles for navigation on ships. Caravans used
the magnetic needles to navigate across the Gobi desert. Magnetism is much older than the
genesis of life and the subsequent evolution of human beings on earth. It exists everywhere in
the entire universe. The earth’s magnetism predates human evolution.

In 1269 a Frenchman named Pierre-de Maricourt mapped out the directions of magnetic lines
on the surface of a spherical natural magnet by using magnetic needle. He observed that the
directions of magnetic lines formed on the sphere were passing through two points diametrically
opposite to each other, which he called the poles of the magnet. Afterwards other experiments also
showed that every magnet, regardless of its shape and size, has two poles called north and south
poles. Some commonly known facts regarding magnetism are as follows :

(1) The Earth behaves as a magnet with the magnetic field pointing approximately from
geographic south to north direction.

(2) When a bar magnet is suspended from its mid—point such that it can rotate freely in

MAGNETISM AND MATTER

horizontal plane, then it continues to rotate (oscillate) until it aligns in the north—south direction.
The end of the magnet pointing towards the north is called the magnetic North pole of the
magnet, and the end pointing towards the south pole is called the magnetic South pole of the
magnet.

(3) Like magnetic poles repel each other, and the unlike poles attract each other.

(4) The positive and negative charges in electric dipole
may be separated and can exist independently, called elec-
i tric monopoles. The magnet with two poles may be re-
N L] garded as a magnetic dipole. But the magnetic poles are
always found in pairs. The north and south magnetic poles
cannot be separated by splitting the magnet into two parts.
7 L j Even if the bar magnet is broken into two or more parts,

then also each fragment of the magnet behaves as an
independent magnet with north and south magnetic poles with
somewhat weaker magnetic field (See figure 5.1). Thus an
independent magnetic monopole does not exist. The search
for magnetic monopoles is going on.
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(5) Magnets can be prepared from iron and its alloys.

In this chapter you will learn the equivalence between magnetic field of a bar magnet and
a solenoid, the magnetic dipole moment of a current carrying loop and the dipole moment of
orbiting electron in an atom.

The magnetic field strength produced by a magnetic dipole at a point on its equator and
at a point along its axis is calculated. The magnetic field of the earth, geomagnetic elements,
as well as, para, dia and ferro—magnetic materials are also discussed with suitable examples in
this chapter. At the end of this chapter, the applications of permanent magnets and electromag-
nets are explained in brief.

5.2 The Bar Magnet

The great scientist Albert Einstein got a magnet as a gift when he was a child. He was much
fascinated by it and used to play with it. When the magnet attracted iron nalls pins etc., he
wondered how the magnet could attract the things without touching them. S

Figure 5.2 shows the arrangement of iron filings sprinkled on
a plane paper, which is kept on a bar magnet. When the paper is
tapped twice or thrice, the iron filings rearrange in a systematic
pattern representing the magnetic field lines. Similar picture of

magnetic field lines can be formed if the bar magnet is replaced

by a short solenoid, through which a DC current passes. Figure 5.2 Systematic
Arrangement of Iron Filings
Representing Magnetic Field

Lines of a Bar Magnet

(a) Bar Magnet (b) Solenoid (c) Electric-Dipole
Figure 5.3 Magnetic and Electric Field Lines (Only for Information)

Figure 5.3 shows the magnetic field lines due to a bar magnet and a short solenoid. Electric
field lines due to an electric dipole are also shown for comparison.

Following conclusions can be made from the study of figure 5.3 :

(1) The magnetic field lines of a magnet (or a solenoid) form continuous closed
loops. The magnetic field lines emerge out from the magnetic north pole, reach the
magnetic south pole and then passing through the magnet, reach the north pole to
complete the loop. In the electric dipole, these field lines begin from a positive charge and
end on the negative charge or escape to infinity.

It is impossible to have a static arrangement of electric charges, whose electric
field lines form closed loops. This is a typical property of the static electric field.

(2) The tangent to a magnetic field line at a point through which it passes, indicates the

direction of magnetic field E) at that point.
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For example, a compass needle may be used to trace out the magnetic field lines of a bar
magnet by putting it at different positions surrounding the bar magnet.

(3) The magnitude of magnetic field in the region surrounding a magnet can be represented by
the number of magnetic field lines passing normally through a unit area in that region. In figures
5.3 (a) and 5.3 (b) the magnitude of magnetic field B is larger around region (i) than in region (ii).

N (4) The magnetic field lines do not intersect with
B, each other. If they intersect at a point, then the tangents
to the lines at the point of intersection would represent
two different directions of the magnetic field at that point,
which is impossible. (See figure 5.3(d))

1N
P B,

If the magnetic field lines intersect at point P, the

N
Figure 5.3 (d) magnetic fields B, and 15)2 point in different directions.

5.3 Current Loop as a Magnet and its Magnetic Moment

In Chapter-4 you studied that, a loop of area A and
carrying current I behaves as a magnet, with magnetic
- depole moment

m = IA (5.3.1)

The direction of magnetic moment 7 of the loop can

Figure 54 Magnetic Field Produced by a  be found using right hand rule as shown in Figure (5.4)
Current Loop Like that of a Bar Magnet

of Magnetic Dipole Moment 7; Thus. m = I K (53.2)
If there are N turns in the loop, then

m = NIA (5.3.3)

For the points on the axis of the loop of radius a, far from its centre (x >> a), the magnetic
field (Chapter-4) is given by

uola2
B(x) = —= (5.3.4)

_ h ITE(Z2 _ I’J“() IA (A

— 2
3 T = Ta- = area of the loop)

Ho

Bx) = o

= (53.5)
X

Since B(x) and m have same direction,

B() = -2 2m (5.3.6)

which is the axial magnetic field in terms of magnetic dipole moment m of the loop at
x >> a. Equation (5.3.6) is equally applicable for a (short) bar magnet of magnetic dipole

N
moment m .
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5.3.1 Direction of Magnetic Pole in a Current Carrying Loop

(a) Magnetic South Pole (b) Magnetic North Pole
Figure 5.5

Figure 5.5(a) shows the current I flowing in clockwise direction in a circular loop lying in the
plane of the page. According to right hand rule, the side of the loop towards us behaves as a
magnetic south pole whereas the opposite side of the loop behave as a magnetic north pole. The
symbolic notation S indicates magnetic south pole pointing towards us.

Simliarly, if the current flows in anticlockwise direction in the loop, the side of the loop towards
us behaves as a magnetic north pole and opposite side as a magnetic south pole (See Figure 5.5(b)).
The symbolic notation N indicates the magnetic north pole pointing outwards.
5.4 Magnetic moment of an electron rotating around the nucleus of an atom :

Dear students, now you know that a magnetic field is PR
produced by the motion of charged particles or by an electric I o
current. Any material is made up of atoms, and in these atoms /
definite number of electrons (depending on the nature of the Nucleus
element), move in various possible orbits. Such motion of r
electrons in orbits can be considered as an electric current ‘//
around a closed path, with magnetic moment IA (I = electric Fsctron
current, and A = area enclosed by the orbit). The magnetic f"
dipole moment of an atom of any given element, depends upon Figure 5.6 Non-zero Magnetic
the distribution of electrons in various orbits and on their spins. Moment of Atom

As shown in figure 5.6, consider an electron moving with constant speed v in a circular orbit
of radius r about the nucleus. If the electron travels a distance 27r (circumference of the circle)

2nr

in time T, then its orbital speed is v = T Thus the current I associated with this orbiting electron
of charge e is, I = %.
_ 2=n _ v
Here, T = <, and ® = 7
1= &9 - &
2n 2nr

The orbital magnetic moment associated with this orbital current loop is

_ _ eV -1
my =1A = 53— X T = 5 evr(5.4.1)

where A = Tr? = area enclosed by the circular orbit.

For this electron, the orbital angular momentum is L = m,vr. Hence, the orbital magnetic
moment of the electron can be represented as

m, = (z—fnej(mevr) = (ﬁ)L (54.2)

Equation (5.4.2) shows that the magnetic moment of the electron is proportional to its orbital
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angular momentum L. But since the charge of electron is negative, the vectors m, and [ point

0
in opposite directions, perpendicular to the plane of the orbit.
my = _(2518] L (5.4.3)

The ratio 2:1 is a constant called the gyro—magnetic ratio, and its value is 8.8 X 10 C kg™’

e
5.5 Magnetism in Matter

In general, the magnets are prepared from iron (Fe). The atoms of iron normally possess
magnetic dipole moment, but an ordinary piece of iron does not behave as a magnet .

(a) Atomic Current Loops Due to Current lf (b) Overall Bound Current Loop Equivalent
(Magnetized Iron) to Loops in Part (a)
Figure 5.7

The same iron piece can be converted into a magnet, if it is kept in a strong magnetic field
for some time and then the applied magnetic field is removed. As shown in figure 5.7 a wire is
wound on a piece of iron. If Ip = 0, then the magnetic dipole moments of current loops of atoms
are randomly oriented. Thus the resultant magnetic moment of the iron piece becomes zero and the
iron piece does not behave as a magnet.

When sufficient current I passes through the wire, a strong magnetic field is generated in the
iron piece, due to which the elemental atomic currents redistribute in the iron piece. Thus a resultant
bound current Ip, is generated in the iron piece (See Figure 5.7(b)). When the current If is slowly
reduced to zero, all of the elemental atomic currents do not return to original state even though the
external magnetic field becomes zero. This way the iron piece sustains magnetic field.

5.6 Equivalence between a Bar Magnet and a Solenoid

=

- {{TT

(a) (b)

%

Figure 58 A Bar Magnet and a Solenoid

Figure 5.8 shows a bar magnet and a solenoid. If the pole strength of bar magnet is p, (even

though such individual poles do not exist), and the distance between two poles is 2/ then according
to definition, the magnetic dipole moment of bar magent is
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my = ZZpb (5.6.1)
m

“p, = 2_? (5.6.2)

The suffix b here indicates that the magnetic moment is due to bar magnet.

Note : Only for infomation : The poles (p,) of the bar magnet are not on the end
faces of the bar magnet, but are situated inside, in such a way that the distance between

the two poles (magnetic length) is 2/,, which is slightly less than the geometric length 2/ of

the bar magnet. For practical purposes the magnetic length 2[,= % X 2[, is taken as

geometric length 2/, in this book.

In a solenoid of cross sectional area A, carrying current I, each turn can be treated as a closed
current loop, and hence a magnetic dipole moment IA can be associated with each turn. As the
magnetic dipole moment of every turn is in the same direction, the magnetic dipole moment of the
solenoid is a vector sum of dipole moments of all turns. If there are total N turns in length 2/ of
the solenoid, then its magnetic moment is

m_= NIA (5.6.3)

From equations (5.6.1) and (5.6.3), we can define equivalent pole strength of solenoid as

_ My _ NIA _
p,= 5 = S =nA (5.6.4)
where n = % = number of turns per unit length of solenoid.

From equation (5.6.4), the unit of pole strength is A m.

As mentioned in the article (5.3) the magnetic field along the axis of dipole moment m is

3|

- h 2

Bw = 32 - = (5.6.5)

L))|

Hence, the magnetic field produced by a bar magnet or a solenoid can be calculated by

replacing m by n_z; or ”_1:’ respectively, in equation (5.6.5).

What happens if bar magnet is broken ?

I I I
— — —
/ =l i ¥ 1E. [ ¥
S NI S Nl (\i I. _':@ i ' (’“)
b1 — b—1— .L-. ! o P f —

(a) (b)

Figure 5.9 Broken Bar Magnet and a Solenoid

If the solenoid of figure 5.8 is broken into two equal pieces as shown in figure 5.9.(b), then the
pole strength of each piece of solenoid remains same as nlA, since the number of turns per unit

length (n) remains same. By analogy we can say that the pole strength of each piece of bar magnet
also remains same.
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In both cases, the magnetic length becomes half of the original length. Hence the magnetic
dipole moment also becomes half.

5.6.1 The Electrostatic Analogue : Comparing equatians (5.6.1) and (5.6.5) with corresponding
equations for electric charge (chapter 1), it can be observed that the magnetic field at large distances
due to a bar magnet or current loop of magnetic moment 7 can be obtained directly from the
equations of electric field due to an electric dipole of dipole moment p = 2aq, by making following
replacements.

E > B, 7P > m, — -
dne, 4n
Table 5.1 Analogy between Electric and Magnetic Dipoles
Quantity Electrostatics Magnetics
1 [
Constant 4ne, In
g (charge) p (pole strength)
Dipole moment 7 =q23) m =pRT)
. . - 1 l_; = Lo m
Equatorial Field EM) =~ g=— 3 |BOW = ~In g
(V2 +a?? (2+1%)2
y>>a _ 1 z _ My
y>>1 - dme, 3 T 4n y?
. . 1 2Pz = = 2mz
Axial Field E(@ = B(z) = -2
4ne, (z2 a2)2 4n (22 12)2
e>>a - L2 _ Mo 2
z7>>1 4ne, 3 4n 3
Force F= qE) F= p_B)
Torque 7= 7 X E T=m X B
(in External Field)
Energy U=-7-E U=-u-B
(in External Field)

Ilustration 1 : Find the force between two small bar magnets of magnetic moments

,711 and ,,72 lying on the same axis, as shown in the Figure. (p, and p, are the pole strength of

magnets (1) and (2) respectively)
(1) )

e -
.

E :

Yoy _ 8
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Solution : To find the force on magnet (2) due to magnet (1), calculate the magnetic field due
to magnet (1) at the poles of magnet (2). The axial magnetic field at the north pole of magnet (2)
due to magnetic moment m, is (from the geometry of Figure)

KR 2m a
4 (x_12)3 )

N

Similarly, the axial magnetic field at the south pole of magnet (2) is

_ By 2my
B = 0. 2

The repulsive force F acting on the north pole of magnet (2) having pole strength p, is (like
F = ¢gE in electrostatics)

_ _ Ky 2pm
Fy =pBy = 2 R 3)

which is acting away from magnet (1)

Similarly, the attractive force Fg acting on the south pole of magnet (2) is

2
Ko 2Pty 4

F, = p,Bg = A (x+lz)3

which is acting towards magnet (1)

Hence the resultant force on magnet (2) is

F =F, - F

3 3
_ g 11 My (r+5) = (x-1)
T dn 21[’2’"1[(x—12)3 (x+12)3} T om pzml{

3

{1+ 1)}

2

_ MK 6x7,
S lez—lfﬁ]

[Because (a + b)Y = a® + b® + 3ab(a + b) and 123 << x212 in numerator]

ugmy  20,Py3x°
2 6

(Since /> << x?, and hence [,> can be neglected)
3pgmym,
4
2mx

s F = 5)

Where m, = 2lp, = magnetic moment of magnet (2)

This resultant force is repulsive for the magnet positions shown in Figure, and acts on magnet
(2) in a direction away from magnet (1).

[What will be the resultant force between the two bar magnets, if the direction of one of the
magnets is reversed ? Think !]
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Illustration 2 : Find the torque on small bar magnet (2) due to small bar magnet (1), when
they are placed perpendicular to each other as shown in Figure. (/, << d, [, << d)

2 Solution : From the geometry of Figure, it is seen that both the
(b F poles of magnet (2) are lying on the equatorial line of magnet (1).
P [ S
2) 2Tl E | N— B The magnetic field B produced by the small bar magnet (1) at
J_Q v i n_1)2 distance (d — [,) on its equatorial plane is
: _ Ko _ ™
: B, = L — 1)
N 4r d_12)3 (
4 Similarly the magnetic field B produced by the magnet (1) at
! south pole of magnet (2), lying at a distance (d + [,) on its equatorial
S plane is
{(‘1..)__: ':'EL....E.'-I'IEI.:‘_‘__I“___) y
5 By = g2 —1 @
i A (d+1)

Thus as shown in figure the forces F and Fg acting on the north and south poles of magnet

(2) having pole strength p, are

_ _ K _Mmpy

Fy=pB = 22 Ly (3)
_ _ K _™P

Fs - szs T 4n (d+lz)3 (4)

As [ << d and |, << d, I, and I, can be neglected in comparison with d in equations (3) and
4).

. _ — Ko ™Mp,

..FS—FN—ﬂT 5)

As the non-colinear forces F¢ and F are acting on magnet (2) in opposite direction, they form
a couple. Hence the torque due to these forces is

= -

7 =25, x Fy =2, xE

- o

. - — - — . .
Since Fy L 4 and E L L, the magnitude of the torque with respect to centre of magnet (2)

2
T =2F), = 0Tk L T (©6)

4 43 4 43

where 2L,p, = m, = magnetic moment of magnet (2).
5.7 Torque Acting on a Magnetic Dipole (Bar Magnet) in a Uniform Magnetic Field

e

. . = In Chapter-4 we have studied that the torque acting
/‘\E")\. > > on a rectangular coil of magnetic moment m , placed in a
;21 e : E)i uniform magnetic field B is
S # 0 ; 7= X §}
s Py o s T = mBsinO 7.1)

-

Figure 5.10 Torque Acting on a
Magnetic Dipole of Magnetic Moment

7 in Uniform Magnetic Field B magnetic moment is also represented by symbol ﬁ) ).
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This fact can be observed by placing a bar magnet or magnetic needle of magnetic dipole
moment 7 in a uniform magnetic field B (See figure 5.10). In terms of pole strength, the magnetic
field B can be considered equivalent to the force acting on unit pole strength. The magnetic field

5
exerts equal and opposite forces Fy and 1_:; on the north and south poles. But since these forces

do not lie on a straight line, they form a couple. Perpendicular distance between these two forces
is ND. Under the influence of this couple, the magnetic dipole rotates to a new position making angle

O with the direction of magnetic field B .

If the angle © (in radian) in equation (5.7.1) is small, then sin@ = 6.

s T = mBO (5.7.2)

This torque, in the figure, is trying to rotate the dipole in a clockwise direction. Now if we try
to rotate the dipole in anticlockwise direction further by a small angle O with respect to this
equilibrium position, then the torque represented by equation (5.7.1) will act in opposite direction.
Thus we may write this restoring torque with negative sign as

T = —mBO (5.7.3)

According to Newton’s second law of motion (for rotational motion)

1 4% = —mBo (5.7.4)

"ar

Where 1 is the moment of inertia of the magnetic dipole with respect to an axis perpendicular
to the plane of figure and passing through the centre of the dipole.

2
:%z ~mB gy = — (5.1.5)

Equation (5.7.5) is similar to the differential equation for angular simple harmonic motion. Hence
the angular frequency

mB
o= 2B (5.7.6)
m
— 2n _ Tn
. T= 2 =omfm (5.7.7)
. . 471
which gives B = R (5.7.8)
mT

The potential energy of the magnetic dipole in the external field B is given by

U, = jrde = ijsinede = mBjsinede

B

. U, = —mBcos® = —m -B

(5.7.9)

In eqlilation (5.7.9) we have taken the constant of integration to be zero by considering the
potential energy to be zero at O = 90°, i.e. when the magnetic dipole is perpendicular to the field.

At 6 = 0°, U, = —mBcos0° = —mB,

which is the minimum value of potential energy representing most stable position of the magnetic
dipole.

At 6 = 180° U, = —mBcos180° = mB,

which is the maximum value of potential energy representing most unstable position of the
magnetic dipole.
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Illustration 3 : A magnetic needle placed in uniform magnetic field has magnetic moment 6.7
X 1072 A m% and moment of inertia of 15 X 107 kg m?. It performs 10 complete oscillations in
6.70 s. What is the magnitude of the magnetic field ?

Solution : The periodic time of oscillation is, T = % = 0.67 s, and

AT 4x(3.14)%x15%107
n A0 _ g T
mT 6.7x1072x(0.67)

Illustration 4 : A short bar magnet is placed in an external magnetic field of 600 G. When
its axis makes an angle of 30° with the external field, it experiences a torque of 0.012 N m.

(a) What is the magnetic moment of the magnet ?

(b) What is the work done in moving it from its most stable to most unstable position ?

(c) The bar magnet is replaced by a solenoid of cross-sectional area 2 X 107* m? and 1000
turns, but having the same magnetic moment. Determine the current flowing through the solenoid.

Solution : B = 600 G = 600 X 107*T, ® = 30°, T = 0.012 N m, N = 1000,

A=2x 10" m?

(a) From equation (5.7.1)

T = mBsin®

. 0012 = m x 600 X 107 X sin30°

. m =040 A n (since sin30° = 1)

(b) From equation (5.7.9), the most stable position is at & = 0° and the most unstable position
is at O = 180°. Hence the work done,

W = U, = 180°) — U,® = 0°) = mB — (-mB) = 2mB

=2 X 040 X 600 x 107 = 0.048 J

(¢) From equation (5.6.3)

mg = NIA

But mg = m = 040 A m’, from part (a).

. 040 = 1000 x I x 2 x 107

I =2 A
5.8. Gauss’s Law for Magnetic Field

From Figure (5.3-a) and (5.3-b) we can see that, for any closed surface like (i) or (ii), the
number of magnetic field lines entering the closed surface is equal to the number of field lines

leaving the surface. Since the magnetic field lines always form closed loops, the magnetic flux,
associated with any closed surface is always zero.

-

N
B-da=0 (5.8.1)

closed
surface

where B is the magnetic field and d @ is an infinitesimal area vector of the closed surface.
“The net magnetic flux passing through any closed surface is zero.” This statement is called
Gauss’s law for magnetic field.
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According to the Gauss’s law for electric field

$Edi=0 = 32 (5.8.2)
In equation (5.8.2) if Xg = 0, then
$E-da=0 (5.8.3)

Comparing this equation with equation (5.8.1), we can write that the Gauss law for magnetic
fields indicate that there does not exist any net magnetic monopole (magnetic charge ?) that is
enclosed by the closed surface. The unit of magnetic flux is Weber (Wb).

1 Wb=1Tm?>=1NmA™!

5.9. The Magnetism of Earth and Magnetic Elements

We all are aware of the fact Geomagnetic North
that the Earth has its own magnetic Pole (Nm) M
field. The magnetic field on the
surface of Earth is of the order of
10° T (T = tesla).

The magnetic field on the Earth
resembles that of a (hypothetical)
magnetic dipole as shown in figure
5.11.

The magnitude of magnetic

R .
. Geographic North
&

MM = Magnetic Axis

RR Axis of Rotation

AA" = Magnetic Equatorial
Line

BB' = Geographic
Equatorial Line

moment m of this (hypothetical) Geographic Sout

dipole is of the order of 8.0 x 10? Pole (Sg) MGeomagnetiC South
J T'. The axis MM of the dipole R Pole (Sm)
moment 771) does not Coincide Wlth Figure 511 Magnetic Field of Earth

the axis of rotation RR of the Earth, but is tilted by about 11.5°. The dipole axis MM intersects the
Earth’s geomagnetic north pole somewhere in north Canada, and the geomagnetic south pole in
Antarctica. The magnetic field lines emerge out in the southern hemisphere and enter in the northern
hemisphere. The actual south pole of earth’s magnetic dipole is lying in the direction in which the
north pole of magnetic needle, capable of rotating freely in the horizontal plane, remains stationary.
Generally, we call this direction on earth as “Earth’s magnetic north.” The geomagnetic poles of
Earth are located approximately 2000 km away from the geographic poles.

The geographic and geomagnetic equators M .

. . ° ° v X Yl
intersect each other at longltudg 6° west ‘and 174 R & Geomagnetic
east. In India, Thumba near Trivandrum is on the Geomagnetic 3 Equator

magnetic equator, and hence it has been selected as Meridian \

the rocket launching station.

Each place on earth has a particular latitude @ = o = S
and longitude which can be obtained from a good e \
book of horoscope or map. The longitude circle
passing through any place determines its Geographic _
geographic North-South direction. An imaginary Meridian N
vertical plane at a place on the Earth containing 1 *IL s
the longitude circle and the geographic axis of

the Earth is called the geographic meridian Figure 5.12 Geographic and Geomagnetic,
(See figure 5.12). Equator and Meridian of the Earth

Geographic
Equator

Further, the magnetic field lines of geomagnetic dipole are also passing through every place on
Earth. Hence an imaginary vertical plane at a place on the Earth, passing through the
magnetic axis and containing magnetic field lines is called magnetic meridian at that place.
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Illustration 5 : The Earth’s magnetic field at some place on magnetic equator of Earth is 0.4
G. Estimate the magnetic dipole moment of the Earth. Consider the radius of Earth at that place

o be 64 X 10° m. (£2 = 10"T m A™, and 1 G = 107 T)
Solution : The magnitude of equatorial magnetic field, according to equation (5.6.6) is

By

E 410)3

But B, =04 G =4 x10° T

3 3 -5 643
4my’B Bpy 4x107 x(6.4%x10
Com= B o B (_7 L =105 x 10 A m?
[ 10
4t

Ko

5.9.1. Geomagnetic Elements : In order to describe the magnetic field of Earth scientifically,
certain magnetic parameters are defined, called geo-magnetic elements.

Magnetic Declination : The angle between the magnetic meridian and the geographic
meridian at a place on surface of Earth is called magnetic declination at that place.
Thus, the angle between the true geographic north and the magnetic north at any place on the
surface of Earth is the magnetic declination (D) or simply declination at that place.

R

- L Geographic North
) Z\

D (Declination at A)

(Declination at A)

R M
(a) Declination at Point A on the (b) Magnetic Needle Placed in Horizontal
Surface of Earth Plane at Point A

Figure 5.13

As shown in figure (5.13-a) consider point A on the surface of Earth. At this point, the direction
of true geographic north is determined from tangent to A the longitude circle of geographic meridian.
A magnetic needle free to rotate in horizontal plane aligns along the magnetic meridian at point A.
The north pole of the needle points towards the geomagnetic north pole (tangent to the magnetic
meridian at A). The angle between the geographic meridian and magnetic meridian at point A
indicates the declination at the point A.

The declination is larger at higher latitudes and smaller near the equator. The declination is small
in India, it being 0°58" west at Bombay, and 0°41" east at Delhi. Thus, at both these places the
magnetic needle shows true north quite accurately.

Magnetic dip angle or inclination : Magnetic dip angle or inclination is the angle
¢ (up or down) that the magnetic field of Earth makes with the horizontal at a place
in magnetic meridian.
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Magnetic field lines are not locally horizontal
at all places on Earth. At a place near north
Canada, magnetic field lines point vertically

downwards, whereas at a place on the magnetic

Magnetic
Equatorial
Line

equator, these field lines are horizontal. At the

magnetic equator, dip angle is zero. As we move

R M

towards magnetic pole, the dip angle increases and

Figure 5.14 Magnetic Dip Angle at
becomes 90° at magnetic poles. Different Places on the Earth’s Surface
in Magnetic Meridian

[Only for Information]

Horizontal Component and Veritical Component of Earth’s Magnetic field

Figure 5.15 shows the Earth’s magnetic
OPQR : Magnetic Meridian

field (E) ), angle of declination (D) and the OPQ'R' : Geographic Meridian o ;’/"?Geographic

. North
angle of dip (¢) at a place (P). D = Declination = | o
0 = Angle of Dip = !
. . . . - =B Geomagnetic
The magnetic field B at point P is P = q;iD L Cosq’! Q 5 Norgth
| i
. . > L = |
resolved into horizontal component B, pointing B B: |
towards geomagnetic north pole, and vertical —Bsin\(]];f """"""" ’,f""R
= - e
component B,, pointing towards the centre of ok
Earth. The angle made by §>H with geographic c \tf .
. g . . . entre o
meridian is the angle of declination (D), Farth

whereas the angle between §H and B is the
angle of dip or inclination ().

N
Figure 5.15 Components of Earth’s Magnetic Field B

The declination D, the angle of dip ¢, and the horizontal component of Earth’s field §H are
known as geomagnetic elements or the elements of Earth’s magnetic field.

For the magnetic meridian OPQR of figure (5.15), we have

B, = Bsing (5.9.1)
B, = Bcoso (5.9.2)
B
tan ¢ = §- (5.9.3)
H
and B = [B,+B,’ (5.9.4)

Illustration 6 : A short bar magnet with magnetic dipole moment 1.6 A m? is kept in magnetic
meridian in such a way that its north pole is in north direction. In this case, the null (neutral) point
is found at a distance of 20 cm from the centre of the magnet. Find the horizontal component of

the Earth’s magnetic field.

Next, the magnet is kept in such a way that its magnetic north pole is in south direction. Find
the positions of neutral (null) points in this case.
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Solution : From the figure (a) one can observe that
on the magnetic equator of the magnet, horizontal field
lines of the earth’s magnetic field and the magnetic field
lines due to the magnet are in mutually opposite directions.
Hence in this case, one finds two points on magnetic
equator of the magnet at equal distance from the magnet
(one above and one below) in such a way that at these
points the above mentioned two magnetic fields are equal
in magnitude and opposite in directions. At such points the
resultant magnetic field is zero. Such points are called
neutral or null points.

1.6 A m?

Let, the distance of neutral points from the centre of
the magnet is

d =20 cm=02m
Now the magnetic field due to a short bar magnet
on its equatorial plane B, must equal B

Here, m =

m _
1 H.d_?_BH

B - 107x 1.6
e T (02
However if the bar magnet is kept as in part (b) of the Figure, then it is clear that on the
magnetic axis, B, and the magnetic field due to the magnet are in mutually oposite directions. In
this case the neutral points are on the axis. Let d, be the distance of such points from the centre

of magnet, then B,, the magnetic field on axis, must be equal to B,

=2xX10°T

— KMo 2m _
2 = 3 T Py
4n d2
—7 —7
43 = 10B-2m _ 10 x2i<51.6 — 16 x 10°3
2 H 2%10

d, =252x 10" m =252 cm
Illustration 7 : A magnet is hung horizontally in the magnetic meridian by a wire without any
twist. If the supporting wire is given a twist of 180° at the top, the magnet rotates by 30°. Now
if another magnet is used, then a twist of 270° at the supporting end of wire also produces a rotation

of the magnet by 30°. Compare the magnetic dipole moments of the two magnets.

Solution : If resultant twist in the wire = 9,
— o o __ o __ T
51 = 180° — 30° = 150° = 150 X 130 rad
— o o _ o _ T
and 52 = 270° — 30° = 240° = 240 X T30 rad

If the twist—constant for the wire is k then
Rotating torque, T, = kO, and T, = kO,
Here o is the angle made by the magnetic dipole moment with the magnetic meridian.

L .
T, = mlBH sinol

Since the second magnet is also rotated by the same angle.
" .
T, = mB, sino
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oge . _ [] _
At equilibrium T, = T and T, = 1

I _4h
T2'_T2
mo 6% 150 _ 5

m, — 8, ~ 240 ~ 8
Illustration 8 : A magnetic needle is hung by an untwisted wire, so that it can rotate freely

in the magnetic meridian. In order to keep it in the horizontal position, a weight of 0.1g is kept on
one end of the needle. If the magnetic pole strength of this needle is 10 A m, find the value of

the vertical component of the earth’s magnetic field. (g = 9.8 m s7)

Solution : PBy
S
N | —p— | —»
B = 0.
- i
' BV B a i
B v
mg DBy
Magnetic _ |
Meridian
(a) Normal Position (b) Position after inserting weight

Figure (a) shows the position of the magnetic needle in the magnetic meridian without any
weight. In figure (b), a mass m is kept on the S—pole of the needle.
The vector sum of torques due to all forces must be zero for the equilibrium of the needle in
horizontal direction.
. —pBV(l) - va(l) + mg(l) =0
[The torque producing rotations in clockwise direction
is taken as negative.]

o 2pB = mg
_ mg _ 10°*x98 _ _ 10
B = P 7310 m=0.1¢g=10" kg,
. B, =49 x10° T p=10Am
Ilustration 9 : As shown in' figure, plane PSTU forms an D

angle of o and plane PSVW makes an angle of (90° — o) with O%G)Q W
9

L]
the magnetic meridian, respectively. The value of magnetic dip ?‘2‘ @y@ : 0 ]iH
angle in plane PSTU is ¢, and its value in plane PSVW is ¢,. OAE
If the actual dip angle at the place is ¢, show that, 4'6; .
cot’hp = cotd, + cor’d, J N
B vi U
Solution : fan¢ = B_V (D ”,-' | Mag.ne?tic
H 1. Meridian
In plane PSTU horizontal component is B coso 5 I
B tand
_ \ _ fano
. tan®, = Bme:> COSOL = Ygng = tan - cotd, .
(from equation (1)) 2)
Similarly for plane PSVW
sino. = tan - coto, 3)

Squaring and summing the equations (2) and (3)
cos’0, + sin*oL = 1 = tan*Q (cot’d, + cot’d,)
. cotd = cord, + cotd,
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5.10 Magnetization and Magnetic Intensity

Consider a solenoid of N turns having length /. When a current If is passed through it, the
magnetic field produced inside the solenoid (with air or vacuum) is .

B, = uOnIf (5.10.1)
Where n = % = number of turns per unit length of solenoid

This current If is called free current. If we denote the free current per unit length by i . then

if = nIf (5.10.2)

s B, = uoif (5.10.3)
Now a material whose magnetic properties are to be studied is placed inside the solenoid. Let
[ be the length of the material, and A be its cross-sectional area. The magnetic field B, present inside

the solenoid due to magnetizing current if, magnitizes the material such that it acquires some magnetic

moment, say m . This magnetic moment m of the material can be considered to be produced due
to an equivalent surface current loop carrying current I,. This current is called bound current. The
dipole moment of this current loop is

mo=1,A (5.10.4)

where A = area of cross-section of the material = area of current loop.

The net magnetic moment per unit volume of the material is called magnetization M of the
material. Thus

LA |
= = b = b =y
M= g A ; I, (5.10.5)
. I . .
Here i, = T” = bound current per unit length of the core material.

The unit of M is A m> m™ = A m™'. Here M is a vector quantity. Its direction is along i .
Thus the total magnetic field inside the magnetic core material placed inside the solenoid is due

to both currents i, and 1.

f b

S B =y, (if + 1) (5.10.6)
Using equation (5.10.5) in (5.10.6)
B =y, (if + M) (5.10.7)

B .

K, ~— M= I (5.10.8)
Here, “% — M is defined as magnetic intensity H, and its value is equal to magnetizing

current, if. Hence

B _M=H=i (5.10.9)
B=yp H+M (5.10.10)
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Thus, the magnetic field B induced in a substance, depends on H and M. Further, it is observed
that, if H is not too much strong, then the magnetization M induced in the substance is proportional

to magnetic intensity H.
S M=y H (5.10.11)

Here ) is a constant, called magnetic susceptibility of the material of the substance. It is a
dimensionless quantity. Its value depends on the type of material and its temperature. It is a measure
of how a magnetic material responds to external magnetic field. The magnetic susceptibility of some

of the substances is listed in table (5.2) for information only.

Table 5.2 Magnetic Susceptibility of some Elements at 300 K

(for information only)

Dimagnetic Substance y- Paramagnetic Substance X,
Bismuth -1.66 x 107 Aluminium 23 X 107
Copper -9.8 x 107° Calcium 1.9 x 107
Dimond —2.2 x 107 Choromium 2.7 x 107

Gold -3.6 X 107° Lithium 2.1 x 107
Lead -1.7 x 107 Magnesium 12 x 107
Mercury —2.9 x 107 Niobim 2.6 X 107
Nitrogen (STP) -5.0 x 107 Oxygen (STP) 2.1 x 107
Silver —2.6 x 107 Platinum 29 x 107
Silicon —42 x 107° Tungsten 6.8 X 107

The interpretation of equation (5.10.6) shows that, without putting magnetic material in solenoid,
if the same magnetic field [B = W (if + i,)] is required to be produced, then over and above
the current If, an additional current I must be passed through the solenoid, such that the additional
magnetizing current per unit length nl, = i, is produced.

The substances for which ) ~is positive are called paramagnetic, for which M and H are in

the same direction. The substances for which ) is negative are called diamagnetic, for which M

and H are in opposite direction.
Substituting (5.10.11) in (5.10.10),
B=p H+xH]=uy (1 +7y)H=UH (5.10.12)
Where 1L = W, (1 + % ) is called permeability (magnetic permeability) of the material. uio is
called relative permeability of the material, denoted by L .

RRNTRE u—*t) =1+, (5.10.13)
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which gives,

B = uuH (5.10.14)

Note : The vacuum cannot be magnetized. Hence for vacuum M = 0. Thus from equation
(5.10.10), for vacuum B = K H.

Illustration 10 : A solenoid has a core of material with relative permeability of 400. The
current passing through the wire of solenoid is 2A. If the number of turns per cm are 10, calculate
the magnitude of

(a) H, (b) B, (¢) %, (d M, and (e) the additional magnetizing current I .
(Take W, = 4w X 107 T m A™).

Solution : Here W= 400, I =2 A, n = 10 tucr% = 1000 _turrr? >

(a) Magnetic intensity H = if =nl = 1000 X 2 = 2000 A m™
(b) Magnetic field B = puH = 41 X 107 x 400 x 2000 = 1.0 T
(c) Magnetic susceptibility of the core material is
X, = H —1=400 -1 =399
(d) Magnetization
M =% H = 399 X 2000 = 7.98 X 10° = 8 X 10° A m™

(e) The additional magnetizing current I is obtained from M = nl = i, as

_ M _ 8x10° _
L, = 7 = oo = 800 A

Illustration 11 : The region inside a current carrying torodial winding is filled with tungsten of
susceptibility 6.8 X 107. What is the percentage increase in the magnetic field in the presence of
the material with respect to the magnetic field without it ?

Solution : The magnetic field in the current carrying torodial winding without tungsten is
B, = wH

The magnetic field in the same current carrying torodial winding with tungsten is

B = uH

Bo = Mo
[ [ HL—=Uy
Butu=u0(1+xm):>u—o=1+Xm:>u—0—lzxm:> 0y = X
B-B,
Hence, B =X,

‘. Percentage increase in the magnetic field in presence of tungsten is

—By _ s _ 3
Bo X 100 = (6.8 X 10™) X 100 = 6.8 X 10 %

5.11 Magnetic Properties of Materials : Dia, Para and Ferro Magnetism

We know that each electron in an atom possess an orbital magnetic dipole moment and a spin
magnetic dipole moment, that add vectorially. This type of resultant magnetic moment of each
electron in an atom add vectorially, and the resultant dipole moment of each atom in the sample of
a material add vectorially. If the resultant of all these dipole moments produces a magnetic field, then
the material is said to be magnetic material.
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The behaviour of a material in presence of an external magnetic field classifies the material as
diamagnetic, paramagnetic or ferromagnetic. The classification of dia, para and ferro magnetic
materials in terms of their susceptibility, relative permeability, and a small positive number € (this ‘€’
should be not be taken as permitivity of the medium) used to quantity paramagnetic material are
briefly represented in Table 5.3.

Table 5.3
Diamagnetic Parmagnetic Ferromagnetic
-1=< % <0 0<y, <€ X, > 1
0<p <l I<p <1+e¢ o >> 1
Ho<H, n> U n>>

5.11.1 Diamagnetic Materials : The atoms/molecules of gold, silver, copper, silicon, water and
bismuth etc. do not possess permanent magnetic dipole moments. The orbital motion of the electrons
and their spins are such that their total magnetic dipole moment is zero. Such materials are called
diamagnetic materials.

When the diamagnetic material is placed in an external magnetic field, a net magnetic moment
in a direction opposite to that of the external magnetic field is induced in each atom. Due to this,
each atom of diamagnetic material experiences repulsion.

Figure 5.16 shows a bar of diamagnetic material placed in Diamagnetic Material

ol

an external magnetic field B. The field lines are repelled by

induced magnetic field (weak) in the material, and the resultant

field inside the material is reduced.

As shown in figure 5.17, when the bar of diamagnetic

material is placed in a non-uniform magneic field, the in- Figure 5.16 Diamagnetic
d d . h le is i h ic field Material in
uced magnetic south pole is in the strong magnetic field, External Magnetic Field

and the induced north pole is in the weak magnetic field.

B
®_ Induced &5

. . — . .
Hence, the magnetic force on the induced S-pole (FS acting F_"-;
==

towards left) is more than the force on induced N-pole (13;I
- - -
F=F ~Ey (Towards Left)

towards right). As a result the bar of diamagnetic material S

experiences a resultant force towards the region of weaker Figure 5.17 Force Acting on
L ) o ) ) Diamagnetic Material Placed in
magnetic field. The magnetic susceptibility ), of diamagnetic Non-uniform Magnetic Field

materials is negative.

For superconductors ), = —1 and W, = 0. When superconductors are placed in an external
magnetic field, the field lines are completely expelled. The phenomenon of perfect diamagnetism in
superconductors is called the Meissner effect, after the name of its discoverer. Superconducting
magnets can be used for running magnetically leviated superfast trains.

5.11.2 Paramagnetism : In paramagnetic material, the atoms/molecules possess permanent
magnetic dipole moments. Normally, the molecules are arranged such that, their magnetic dipole
moments are randomly oriented. Hence the resultant magnetic moment of the material is zero (See
figure 5.18).
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Figure 5.18 Normal Dipole Distribution in Figure 5.19 Magnetic Dipole Moment of One

Paramagnetic Material Dipole Shown Aligned with §

When the paramagnetic material is placed in external magnetic field B, these tiny dipoles try
to align in the direction of B. However, due to thermal agitation, all dipoles could not attain 100%

alignment in the direction of B.

Figure 5.19 shows the magnetic field due to the magnetic dipole aligned with B . The field lines
get concentrated inside the material (see figure 5.20)

5 MN

-r.--.- s -.-.-1

Tt — - H
> B Fied :
. < i H
o ﬂ/
= AR er D
Material = —
F = FN FS
Figure 520 Magnetic Field Lines in Figure 521 Paramagnetic Material in
Paramagnetic Material Non-uniform Magnetic Field

When a bar of paramagnetic material is placed in non-uniform magnetic field (See figure 5.21)
the resultant north pole of the magnetized material feels strong magnetic field, whereas the south pole
experiences comparatively weak magnetic field. As a result of which the resultant force (F — Fy)
acts towards the stronger magnetic field (towards right) on the bar of paramagnetic material. In
practice, this force is very weak.

Aluminium, sodium, calcium, oxygen at STP and copper chloride are few examples of paramag-
netic materials. The magnetic susceptibility ), of paramagnetic materials is positive.

In 1895 Pierre Curie observed that the magnetization M of a paramagnetic material is directly

proportional to the external magnetic field B and inversely proportional to its absolute temperature
T, called Curie’s law,

- B
M = CT (5.11.1)

Where C = Curie’s constant

From equation (5.11.1)

_ B M _ Ho
M =Cqg 7 = CHY
M I
H =%, = CF (5.11.2)
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Ho
. —1=Cg (5.11.3)
As we increase the applied external magnetic field or decrease the temperature of the
paramagnetic material, or both, then alignment of atomic magnetic moments increase. Thus magne-
tization M increases. When magnetic moments of all atoms are aligned parallel to the external
magnetic field, M, u, and Xon become maximum. This situation is called satuaration magnetization.
Curie’s law is not obeyed after this state. If there are N atoms in volume V of the sample, each

with magnetic moment #7, then at saturation magnetization

-
M =

max

(5.11.4)

|
<

5.11.3 Ferromagnetism : The atoms of iron, cobalt, nickel
and their alloys possess permanent magnetic dipole moments due
to spin of electrons in outermost orbits. The atoms of such

materials are arranged in such a way that over a region called

domain, the magnetic moment of the atoms are aligned in the

same direction. In unmagnetized sample, such domains having a

net magnetization are randomly oriented so that the effective  gigure 522 Random Arrangement
magnetic moment is zero (See figure 5.22). of Domains

The explanation about the formation of such domains requires quantum mechanics which is
beyond the scope of this book. The typical domain size is about 1 mm and the domain contains about
10'" atoms. The boundaries between the adjacent domains, having different orientations of magnetic
moment, are called domain walls.

Hysteresis : The effect of an external magnetic field on ferromagnetic material is quite
interesting. To understand this, consider an unmagnetized ferromagnetic material having initial
magnetic field B = 0. Suppose this material is placed in a solenoid of n turns per unit length as
shown in figure 5.8 (b). On passing a current through the solenoid, the magnetic field is generated,
which induces magnetic moment inside the rod. Knowing the volume of the rod, we can evaluate
M, the magnetic moment per unit volume. We already know that

H% - M = if = H (See Equation (5.10.9))
B #

where, if = current passing through unit length of the
solenoid. b

From the values of H and M, we can evaluate B and /
study its variation with if (hence the variation of H). The 2 [0) H or :i
graph of B versus. H can be drawn as shown in / (Magnetiz{ng
figure 5.23. d ¢ Current)

At the point 0 in the graph, the substance is in its

normal condition, without any resultant magnetic field. As H

(or lf) is increased, B increases, but this increase is not Figure 523 Hysteresis Loop

linear. Near point a, B is maximized, which is the saturation
magnetization condition of the rod.
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One can explain the curve Oa as follows : Starting from O, as long as the value of H is small,
most of the atoms, due to strong bonding with their neighbours, do not respond to the external
magnetic field. But the atoms near the domain boundary are in precarious situation. Hence the
domain boundaries, instead of remaining sharp, start shifting. In this situation one domain of the two
adjacent domains, increases in size and the other one reduces in size. If we still keep on increasing
the value of H, ultimately only one domain survives in the substance and the saturation
magnetization is acquired near point a on the graph.

This process is not reversible. At this stage, if the current in the solenoid is reduced, we do not
get back the earlier domain constituation, and when H = 0, we do not get B = 0. This means that
when H is made zero, the substance retains certain magnetic moment, hence the curve ab represents
the effect of reducing H.

The value of B, when H = 0, is called retentivity or remanence. Now, if the current is
increased in reverse direction, then we reach at point ¢ in the graph, the value of H for which B
= 0 is called coercivity. At this point, the magnetic moments of the domains are again in random
directions but according to some different domain structure.

If we keep on increasing the current in the reverse direction, B goes on increasing in the
reverse direction and saturation magnetization is again acquired, but in opposite direction. After
reaching d, if the current is reduced, the substance follows the curve de and again by reversing the
current direction and increasing its value, we obtain the curve ea. This process is called hysteresis
cycle. The area enclosed by the B-H curve represents the heat energy (in joules) lost in the sample
per unit volume per cycle.

Hard ferromagnetic substances : The substances with large retentivity are called hard
ferromagnetic substances. These are used in producing permanent magnets. Obviously, the hysteresis
cycle for such substances is broad (See figure 5.24 (a)). Alnico (an alloy of Al Ni, Co and Cu)
is a hard ferromagnetic meterial. Hence permanent magnets are made using Alnico.

Soft Ferromagnetic Substances : The substances with small retentivity, which means the
materials with narrow hysteresis cycle (See figure 5.24 (b)), are called soft ferromagnetic substances.
For example soft iron; such materials are used for making electromagnets.

B B
ry

_/

L

Hor i Hor i

(a) ()

Figure 5.24 Hysteresis Loops for (a) Hard and (b) Soft Ferromagnetic Materials

Effect of Temperature : As the temperature of ferromagnetic substance is increased, the
domain structure starts getting distorted. At a certain temperature depending upon the material, it is
totally broken up. Each and every atomic magnetic moment attains independence from one another
and the substance gets converted to a paramagnetic material.

The temperature at which a ferromagnetic substance is converted into a paramagnetic substance
is called Curie temperature T . of that substance. The relation between the magnetic susceptibility
of the substance in the acquired paramagnetic form and the temperature T is given by
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C
X, = ﬁ (T > T, (5.11.1)

where, C1 is a constant.

Finally, note that the ferromagnetic material is attracted towards the strong field region whenever
it is kept in a non-uniform magnetic field.

The hysteresis loop shows that the magnetization of a ferromagnetic material depends on the
history (the previous state) of the material as well as on the magnitude of applied field H. The shape
and size of the hysteresis loop depends on the properties of ferromagnetic material as well as on
the maximum value of applied magnetic field H.

5.12 Permanent Magnets and Electromagnets

The ferromagnetic materials which retain magnetism for a longer period of time at room
temperature, are called permanent magnets. These materials have higher retentivity.

Before 400 years, the iron rods were fixed in north-south direction and hammered repeatedly to
prepare magnets. Further, if one end of a magnet is continuously rubbed on a fixed steel rod only
in one direction, then it acquires permanent magnetism.When a current is passed through a solenoid
containing a steel rod, then the rod gets magnetized. Due to hysteresis, the rod retains magnetism
even after the current is switched off. The materials like steel, hard alloys, and alnico have high
retentivity and high coercivity, and hence are used to prepare permanent magnets.

Soft iron has large permeability and small retentivity, and hence is used to prepare electromagnets.
For this purpose, a rod of soft iron is placed in a solenoid as a core, as shown in Figure 5.7(b).
On passing a current through the solenoid, the magnetic field associated with the solenoid increases
by a thousand fold. When the current through the solenoid is switched off, the associated magnetic
field effectively becomes zero.

Electromagnets are used in electric bells and loudspeakers. Giant electromagnets are used in
cranes to lift heavy loads made of iron or loads packed in iron containers (boggies).

In certain applications, an AC current is passed through the solenoid containing ferromagnetic
material, for example in transformer cores and telephone diaphragms. The hysteresis loop of such
materials must be narrow to reduce dissipation of energy in the form of heat.

Ilustration 12 : A magnet has coercivity of 3 X 10° A m™. It is kept in a 10 cm long
solenoid with a total of 50 turns. How much current has to be passed through the solenoid to
demagnetize it ?

Solution : The value of H for which magnetization is zero is called coercivity.

For a solenoid H = nl

Here,H=3x103,n=§=%—500
3
R R : Q.5 LN
n 5x%x10

Ilustration 13 : There are 2.0 X 10** molecular dipoles in a paramagnetic salt. Each has dipole

moment 1.5 X 102 A m? (or J T™'). This salt kept in a uniform magnetic field 0.84 T is cooled
to a temperature of 4.2 K. In this case the magnetization acquired is 15% of the saturation
magnetization. What must be the dipole moment of this sample in magnetic field 0.98 T and at
temperature of 2.8 K ? (Assume the applicability of the Curie’s law).

Solution : Dipole moment of every molecular dipole = 1.5 X 107 A m?

There are 2.0 X 10** dipoles in the sample.
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*. Maximum (saturation) magnetization = 1.5 X 107 X 2.0 x 10* = 30 A m?

But at 4.2 K, sample has 15 % of saturation magnetization

wom, =30 X 015 = 45 A m*

Now according to Curie’s law, if m, is the dipole moment at T, and m, the dipole moment

at T2 then
m_B 5 B
m, = T, X B, (from m o< T)

10.

Here B, and B, are applied magnetic fields

T] B2
-mzzmle_szl

Here, m = 45 Am’, T =42 K, T, =28 K, B, =084 T and B, = 098 T

_ 4.5x4.2x0.98

— 2
My = Thgxosd - 8T AM

SUMMARY

The north and south magnetic poles cannot be separated by splitting the magnet into two or
more pieces. The independent magnetic monopoles does not exist.

The magnetic field lines do not intersect at a point.

The magnetic field lines of a magnet form continuous closed loops. The magnetic field lines
emerge out from the magnetic north pole, reach the magnetic south pole and then passing
through the magnet, reach the north pole to complete the loop.

The magnetic moment of a current loop of area A, carrying current [ is given by
m = IA. If there are N turns of a loop, then m = NIA
If there are N turns of a loop, then m = NIA

IR
The axial magnetic field of a current loop is given by B () = Z_?r 2—';1

X
The orbital magnetic moment of an electron in an atom is given by m, = %evr

When a bar magnet is divided into two equal pieces, the pole strength p, of each piece
remains the same, but the magnetic dipole moment of each piece becomes half of the
original value.

When a magnet of magnetic moment m is placed in external magnetic field B, the

torque acting on it is given by 7 = m X B or T = mBsin® and has potential energy
= =
U, =-m.B
C e = o . .
The Gauss’s law for magnetic field is CJS B-da = 0 which states that “the net magnetic flux
closed

surface

passing through any closed surface is zero.

Magnetic Meridian : An imaginary vertical plane at a place on the Earth, passing through
the magnetic axis is called magnetic meridian at that place.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

The angle between the magnetic meridian and the geographic meridian at a place on the
surface of Earth is called the magnetic declination (D) at that place.

Magnetic dip or inclination(¢) : It is the angle (up or down) that the magnetic field of Earth
makes with the horizontal at a place in magnetic meridian.

0 = 0° at magnetic equator and ¢ = 90° at geomagnetic poles.

The net magnetic moment per unit volume of the material is called magnetization of the

. - g
material, represented by M = %

The magnetic susceptibility %, of a material is a measure of how a magnetic material
responds to external magnetic field. It is dimensionless quantity.

When a diamagnetic material is placed in non-uniform magnetic field, it experiences a resultant
force towards the region of weak magnetic field. The magnetic susceptibility ¥, of diamagnetic
material is negative.

When a paramagnetic material is placed in non-uniform magnetic field, it experiences a (weak)
force towards strong magnetic field. The magnetic susceptibility ¥, of paramagnetic material
is positive.

According to Curie’s law, the magnetization M of a paramagnetic material is given by

_ B
M—CT.

When magnetic moments of all atoms are aligned with external magnetic field M, ¥  and [
become maximum, called saturation magnetization. Curie’s law is not obeyed after saturation
magnetization.

The atoms of ferromagnetic material possess permanent magnetic dipole moment due to spin
of electrons in outermost orbits. These atoms are arranged in such a way that over a region
called domain, the magnetic moments of such atoms are aligned in the same direction. In
unmagnetized sample, such domains having a net magnetization are randomly oriented so that
the effective magnetic moment is zero.

The temperature at which a ferromagnetic substance is converted into a paramagnetic
substance is called Curie temperature T. of that substance. The relation between the magnetic

susceptibility of the substance in the acquired form and the temperature T is

G

Xm = T-T, >

(T > TC), where C, = constant

Permanent magnets have higher retentivity and high coercivity.
Soft iron used to prepare electromagnets have large permeability and small retentivity.

EXERCISE

For the following statements choose the correct option from the given options

1.

A magnet of magnetic dipole moment 5.0 A m?

is lying in a uniform magnetic field of 7 X
107 T such that its dipole moment vector makes an angle of 30° with the field. The work
done in increasing this angle from 30° to 45° is about .......... J.

(A) 556 x 10*  (B) 2474 x 10°* (C) 303 x 10* (D) 550 x 107°

A bar magnet is oscillating in Earth’s magnetic field with periodic time T. If a similar magnet
with the same mass and dimensions has magnetic dipole moment, which is 4 times that of this
magnet, then its periodic time will be .......... .

(A) % (B) 2T C) T (D) 4T
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3. A circular loop carrying current I is replaced by a bar magnet of equivalent magnetic dipole
moment. The point on the loop is lying .......... .
(A) on equatorial plane of magnet
(B) on axis of the magnet
(C) A and B both
(D) except equatorial plane or axis of bar magnet
4. When a current carrying loop is replaced by an equivalent magnetic dipole
(A) the distance [ between the poles is fixed.
(B) the pole strength p of each pole is fixed.
(C) the dipole moment is reversed.
(D) the product pl is fixed.
5. Let r be the distance of a point on the axis of a bar magnet from its centre. The magnetic

field at r is always proportional to

A) = ®) 5

© % (D) not necessarily 3 at all points

6. Magnetic meridian is a plane .......... .
(A) perpendicular to magnetic axis of Earth.
(B) perpendicular to geographic axis of Earth.
(C) passing through the magnetic axis of Earth.
(D) passing through the geographic axis.
7. At geomagnetic pole, a magnetic needle allowed to rotate in horizontal plane will
(A) stay in north-south direction only (B) stay in any position
(C) stay in east-west direction only (D) become rigid showing no movement
8. The horizontal and vertical components of magnetic field of Earth are same at some place on
the surface of Earth. The magnetic dip angle at this place will be .......... .
(A) 30° (B) 45° ©) 0° (D) 90°
9. Inside a bar magnet, the magnetic field lines
(A) are not present
(B) are parallel to the cross-sectional area of the magnet
(C) are in the direction from N-pole to S-pole

(D) are in the direction from S-pole to N-pole
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10.

11.

12.

13.

14.

15.

16.

17.

In non-uniform magnetic field, a diamagnetic substance experiences a resultant force

(A) from the region of strong magnetic field to the region of weak magnetic field.

(B) perpendicular to the magnetic field.

(C) from the region of weak magnetic field to the region of strong magnetic field.

(D) which is zero.

A straight steel wire of length [ has magnetic moment m. If the wire is bent in the form of
a semicircle, the new value of the magnetic dipole moment is

(A) m (B) 2 © % (D) 2

T

At a place on Earth, the horizontal component of Earth’s magnetic field is /3 times its

vertical component. The angle of dip at this place is .......... .

(A) 0 (B) 5 rad (© % rad (D) % rad

A place, where the vertical component of Earth’s magnetic field is zero has the angle of dip
equal to

(A) 0° (B) 45° (C) 60° (D) 90°

A place where the horizontal component of Earth’s magnetic field is zero lies at

(A) geographic equator (B) geomagnetic equator

(C) one of the geographic poles (D) one of the geomagnetic poles

When a paramagnetic substance is brought near a north pole or a south pole of a bar
magnet, it

(A) experiences repulsion (B) experiences attraction

(C) does not experience attraction or repulsion
(D) experiences attraction or repulsion depending upon which pole is brought near to it.

A magnetic needle kept on horizontal surface oscillates in Earth’s magnetic field. If the
temperature of this needle is raised beyond the Curie temperature of the material of the

needle, then .......... .

(A) the periodic time of oscillation will decrease.

(B) the periodic time of oscillation will increase.

(C) the periodic time of the oscillation will not change.

(D) the needle will stop oscillating.

A bar magnet of length I, pole strength ‘p’ and magnetic moment ‘7z’ is split % into two

equal pieces each of length. The magnetic moment and pole strength of each piece is

respectively .......... and ......... .

A, £ B) 2. p © = £ D) . p
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18.

19.

20.

21.

22.

23.

24.

Magnetization for vacuum is .......... .
(A) negative (B) positive (C) infinite (D) zero

A bar magnet of magnetic moment 7 is placed in uniform magnetic field B such that

B . In this position, the torque and force acting on it are .......... and .......... respectively.
(A) 0, 0 B) #xB,mB (C) m-B, mB (D) m-B, mxB

Relative permeability of a substance is 0.075. Its magnetic susceptibility is

(A) 0.925 (B) —0.925 (©) 1.075 (D) —1.075

Two similar magnets of magnetic moment s are arranged as shown in N 15\1

figure. The magnetic dipole moment of this combination is

A) 2 B c It D) m

(A) 2m B) V2 m © 7 D) 5 S
A magnetic needle kept non-parallel to the magnetic field in a non-uniform magnetic field
experiences

(A) a force but not a torque. (B) a torque but not a force

(C) both a force and a torque. (D) neither a force nor a torque

A steamer would like to move in the direction making an angle of 10° south with the west.
The magnetic declination at that place is 17° west from the north. The steamer should move
in a direction .......... .

(A) making an angle of 83° west with the north pole of Earth.

(B) making an angle of 83° east with the north pole of Earth.

(C) making an angle of 27° west with the south pole of Earth.

(D) making an angle of 27° east with the south pole of Earth.
A toroid wound with 100 turns/m of wire carries a current of 3 A. The core of toroid is made

of iron having relative magnetic permeability of W = 5000 under given conditions. The

magnetic field inside the iron is ......... . (Take p, = 4 X 107 T m A™)
(A) 0.15 T B) 047 T (C) 15 x 102 T (D) 1.8 T
ANSWERS

. (A 2.(A) 3 (A 4D 5 D 6 (C
7. (B) 8. (B) 9. (D) 10. (A) 11. (B) 12. (D)
13. (A) 14. (D) 15. (B) 16. (D) 17. (B) 18. (D)
19. (A) 20. (B) 21. (B) 22. (C) 23. (A) 24. (D)

Answer the following questions in brief :

W=

AN

8.

What happens if a bar magnet is cut into two pieces transverse to its length/along its length ?
Does a current carrying toroid have a north pole and a south pole ?

Which phase / phases of matter cannot be ferromagnetic in character ?

Magnetic properties of which materials are affected by temperature ?

What should be retentivity and coercivity of permanent magnet ?

What happens to a ferromagnetic material when its temperature increases above Curie
temperature ?

What is the unit of magnetic intensity ?

What does the hysteresis loop represent ?

198 - Physics-1IT



9.
10.

11.
12.
13.
14.
15.

What are the applications of electromagnet ?

What could be the equation for Gauss’s law of magnetism, if a monopole of polestrength p
is enclosed by a surface ?

What happens when a paramagnetic material is placed in a non-uniform magnetic field ?
What is the unit of magnetic susceptibility ?

What is the declination for Delhi ?

Mention the names of diamagnetic materials.

Which property of soft iron makes it useful for preparing electromagnet ?

Answer the following questions

1.

9.
10.

Obtain an expression for axial magnetic field of a current loop in terms of its magnetic
moment.

Explain symbolic notation for detecting north and south pole of magnetic field in a current
carrying loop.

Obtain an expression for orbital magnetic moment of an electron rotating about the nucleus in
an atom.

Explain in brief, the Gauss’s law for magnetic fields.

What is a geographic meridian and a geomagnetic meridian ? What is the angle between
them ?

Give definition of magnetic declination. How does the declination vary with latitude ? Where
is it minimum ?

Give definition of magnetic dip. What is the dip angle at magnetic equator ? What happens
to dip angle as we move towards magnetic pole from the magnetic equator ?

What happens when a diamagnetic material is placed in non-uniform magnetic field ? Explain
with necessary Figure.

Discuss Curie’s law for paramagnetic materials.

Discuss why the soft iron is suitable for preparing electromagnets.

Solve the following examples

1.

A toroidal core with 3000 turns has inner and outer radii of 11 cm and 12 cm, respectively.
When a current of 0.70 A is passed, the magnetic field produced in the core is 2.5 T. Find
the relative permeability of the core. (M, = 4m X 107 T m A™

[Ans. : 685]

A paramagnetic gas has 2.0 X 10? atoms/m’® with the atomic magnetic dipole moment of

1.5 X 107 A m? each. The gas is at 27° C. (i) Find the maximum magnetization intensity of
this sample. (ii) If the gas in this problem is kept in a uniform magnetic field of 3 T, is it
possible to achieve saturation magnetization ? Why ?

[Hint : Thermal energy of an atom of gas is %kBT, and

Maximum potential energy of the atom = mB.

Find the ratio of thermal energy to the maximum potential energy and give answer.]

(ky = 1.38 x 107 J K™ [Ans. : 3.0 X 10° A m™', No]
Two small and similar bar magnets have magnetic dipole moment of 1.0 A m? each. They are
kept in a plane in such a way that their axes are perpendicular to each other. A line drawn

through the axis of one magnet passes through the centre of other magnet. If the distance
between their centers is 2 m, find the magnitude of magnetic field at the mid point of the line

joining their centers. [Ans. : 5 X 107 T]
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10.

11.

A magnetic pole of bar magnet with pole-strength of 100 A m is 20 cm away from the centre
of a bar magnet. Bar magnet has pole-strength of 200 A m and has a length of 5 cm. If
the magnetic pole is on the axis of the bar magnet, find the force on the magnetic pole.

[Ans. : 2.5 X 107 N]
The work done for rotating a magnet with magnetic dipole moment m, by 90° from its
magnetic meridian is n times the work done to rotate it by 60°. Find the value of n.

[Ans. : 2]

A magnet makes an angle of 45° with the horizontal in a plane making an angle of
30° with the magnetic meridian. Find the true value of the dip angle at the place.

[Ans. : tan™' (0.866)]
An electron in an atom is revolving round the nucleus in a circular orbit of radius
53 x 107" m, with a speed of 2 X 10° m s'. Find the resultant orbital magnetic moment
and angular momentum of the electron. Take charge of electron = 1.6 x 107" C,
mass of electron = 9.1 x 107'kg. [Ans. : 8.48 X 107%* Am?, and 9.65 X 107 N m s]
The magnetic field from a current carrying loop of diameter 1 cm is 107 T at 10 cm from
the centre, along the axis of the loop.

(a) Find the magnetic moment of the loop.
(b) Find the magnetic field at 10 cm from the centre, along the equator of the loop.

Take Z_g =107 Tm A [Ans. : (a) 0.5 A m% (b) 5 X 107 TJ

A magnet in the form of a cylindrical rod has a length of 5 cm and a diameter of 2 cm.
It has a uniform magnetization of 5 X 10> A m™. Find its net magnetic dipole moment.
[Ans. : 7.85 x 1072 J T']
An ionized gas consists of 5 X 10%! electrons/m> and the same number of ions/m>. If the
average electron Kkinetic energy is 6 X 107 J, and an average ion Kkinetic energy is
8 X 1072! J, calculate the magnetization of the gas when a magnetic field of 1.0 T is applied
to the gas. [Ans. : 340 J T! m™]
A closely wound solenoid of 6 cm, having 10 turns/cm and area of  cross-section

3 x 10* m? carries a current of 1.0 A. Find the magnetic moment and the pole strength of
the solenoid.

[Ans. : Magnetic moment of solenoid along its axis = 1.8 X 1072 A m? pole strength of the
solenoid = 0.3 A m]
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6

6.1 Introduction

Ray OprtICS

Light is the agency which stimulates our sense of vision or sight. All curious questions
regarding light: its nature, its generation, its interaction with matter, its speed and propagation
through medium, etc., are described and explained in a branch of physics called optics.
Developments in optics can be classified into three branches:

(I) Ray (Geometric) optics, (2) Wave optics and (3) Quantum optics

Since the wavelength of visible electromagnetic waves (400 nm to 800 nm) is too small
compared to objects around us, light can be considered to travel from one point to another
along a straight line. This is called rectilinear propagation of light. The path of the light
propagation is called a ray, which is never diverging or converging. A bundle of such rays is
called deam of light.

The optical phenomena like reflection, refraction and dispersion can be explained by the ray
optics. The ray optics is based mainly on the following three assumptions.

(1) Rectilinear propagation of light

(2) Independence of light rays (i.e., they do not disturb one another when they intersect).

(3) Reversibility of path (i.e., they retrace exactly the same path on reversing their direction
of propagation).

In the present chapter, we shall study reflection, refraction and dispersion phenomena using
ray optics. Optical instruments like microscope and telescope are also studied at the end of the
chapter.

6.2 Reflection by Spherical Mirrors

For studying reflection of light by spherical mirrors, we shall revise certain points as under :

The laws of reflection

(I) In the case of reflection of light, the angle of incidence and angle of reflection are
equal.

(2) Incident ray, reflected ray and normal drawn at the point of incidence lie in the same
plane. While the incident ray and the reflected ray are on either side of the normal.

These laws are valid at every point on any reflecting surface, whether plane or curved.
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Figure 6.1 Image Formation by Curved Mirrors

Some useful terms used to study reflection of light by curved mirrors are as follows :
Pole : The centre of the reflecting surface of a curved mirror is called its pole (P)

>
Principal Axis : The imaginary line passing through the pole and the centre of curvature (CP)

is called the principal axis of the mirror.

Radius of Curvature : The radius of the spherical shell from which mirrors are made is called
the radius of curvature (R) of the curved mirrors. It is the distance between C and P.

Centre of Curvature : The centre of the spherical shell from which mirrors are made is called
the centre of curvature (C) of the mirror.

Aperture : The diameter of the reflecting surface (QQ') is called the aperture of the mirror.

Principal Focus : The point where the rays parallel to the principal axis meet for concave
mirror or appear to meet for convex mirror on reflection is called the principal focus of the mirror.

Focal Plane : A plane passing through the principal focus and normal to the principal axis is
called the focal plane of the mirror.

Focal Length : The distance between the pole and the principal focus of a mirror is called its
focal length (f).

Paraxial Rays : Rays close to the principal axis are called Paraxial Rays. We shall study lens
and mirrors in reference to Paraxial Rays only.

Sign Convention : In order to specify the position of the object and the image, we require a
reference point and sign convention. We adopt Cartesian sign convention as follows.

(1) All the distances are measured from the pole of the mirror on the principal axis.

(2) Distances measured in the direction of the incident ray are taken positive, while those
measured in the opposite direction are taken negative.

(3) Height above the principal axis is taken positive, while that below the principal axis is taken
negative.

6.3 Relation between Focal Length and Radius of Curvature

In figure 6.2, a ray paraxial and parallel to the principal

Principal axis is shown to incident at point Q of a concave mirror of
Axis small aperture. The reflected ray passes through the princi-

pal focus. Normal drawn to the surface at point Q passes
through centre of curvature. .. CQ = CP. If the angle of
incidence is O, then the angle of reflection ZCQF = 6 =
ZQCF.

From the geometry of the figure, exterior angle,

Figure 6.2 Relation between
Focal Length and Radius of
Curvature ZQFP = 6 +60 =20
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Since the incident ray is paraxial and the aperture of the mirror is small, points P and P' are

very close to each other. ie., CP' = CP = R

and FP' = FP = f

In AQFP, sin20 ~ 20 = & - &

FP' FP
. _ QP _ QP
.20 = = 0 = 2f (6.3.1)
Similarly, from ACQP', sinf =~ 6 = % ~ %
. _ QP
- 0= R (6.3.2)
From equations (6.3.1) and (6.3.2) R = 2f or f = % (6.3.3)

Equation (6.3.3) is also true for a convex mirror. In the case of plane mirror, R is infinite, and
therefore its focal length is also infinite.

6.4 Spherical Mirror Formula

Now we shall derive the relation between the object

distance (#) image distance (v) and focal length (f) for a

concave mirror. As shown in figure 6.3, consider a point
object O on the principal axis at a distance u from the
pole. Let the aperture of the mirror be small. Let the

incident ray OQ makes a small angle (o) with the

principal axis and gets reflected as QI. Another ray from

object O moving along the axis is incident at P, and gets

reflected in the direction PC. Both reflected rays meet at Figure 6.3 Image of a Point Object
. . . . Due to Concave Mi
point I and forms the point like image. He to oneae rren

Since the aperture of the mirror is small, distance PP' = & is very small and can be neglected.
Hence regions OPQ and IQP can be approximated by AOQP' and AIQP', respectively.

According to the laws of reflection, angle of incidence, ZOQC = angle of reflection,

ZCQI = 0. Let CQ and IQ make angle B and 7, respectively, with the principal axis.
In AOCQ, exterior angle B = o + 0
In ACQI, exterior angle Y = B + 0
Eliminating 0 from above equations,
o+ v=2B (6.4.1)

Using the figure, in AOQP',
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arc QP

o (rad) = op
B (rad) = arél?P and
Y (rad) = —ar(;l?P

Using these values in equation (6.4.1) we have,

arc QP n arcQP 2achP
OP 1P - CP

(6.4.2)

Equation (6.4.2) represents the numerical relationship between object distance, image distance

and focal length (or radius of curvature). While using it for calculating any of these physical

quantities, we must apply sign convention. In the present case, # — —u, v — —v and f (or R) —

~f (or —R)

Equation (6.4.2) is the Gauss’ equation for curved mirrors. It is also valid for convex mirror.

6.5 Lateral Magnification

The ratio of the height of the image (') to the height of the object (k) is called the transverse

or lateral magnification (m).

- - K
ie, m = (6.5.1)

For right angled triangles ABP and A'B'P,

i AB AB'

: tan@ = BP = BP (6.5.2)
1

[ ] ]

E : But AB = h, A'B' = —h', PB = —u and
! ' B'P = —v (using sign convention), equation

A'B' = Image (6.5.2) becomes,

Figure 6.4 Image of an Extended Object h
—u

_
—
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Aoz (6.5.3)

Combining equations (6.5.1) and (6.5.3)
v
” (6.5.4)

Equation (6.5.4) is also true for convex mirror.

Illustration 1 : An object lies on the principal axis of a concave mirror with radius of curvature
160 cm. Its image appears erect at a distance 70 cm from it. Determine the position of the object
and also the magnification.

Solution : The mirror equation is

m =

2 _ 1 1
R — u + %
1 2 1 _ 2 1 . : ;
ST =R v =Tido — 70 (using sign convention)
. _ _ ) )
. u = -37 cm = 360

i.e., The object is at a distance 37 cm in front of the mirror.

Lateral magnification, m = - T T35 = 1.89

Ilustration 2 : As shown in the figure, a thin rod AB of length 10 cm is placed on the
principal axis of a concave mirror such that it’s end B is at a distance of 40 cm from the mirror.
If the focal length of the mirror is 20 cm, find the length of the image of the rod.

Solution : f = 20 cm and the end B is at distance 40 cm = 2f = R. Thus the image of B
is formed at B only.

Now for end A,

u=-50cm, f=-20cm, v =72?

-"k_B <20 cm—>
m+ o+ 1= 1 tting th: 1 > P
n 0 . f, putiing €se values “—10— F
am e— 40 em —>

1 1 _ _1
50 TV T 720

1 _ 1 1 _ 20=50 _ 30

v ~ 30 20 ~ 20x50 — 1000
vy =-10 = 333 m

This image A' is on the same side as the object.
Now, length of the image = 40 — 33.3 = 6.70 cm

Ilustration 3 : Derive the formula for lateral magnification, m = T—u for spherical mirrors;

where f = focal length and u = object distance.

ool _ 1,1 . 1_ 1 1
SOl“tlon‘f_u+v"v_f Rl

f
.‘V:u—f :5214_}(
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v f

andm:—; = 7

Note : For a plane mirror f — oo .. m = 1 (Magnitude)
6.6 Refraction of Light

When a ray of light enters obliquely from one transparent medium to another transparent medium
its direction changes at the surface separating two media. This phenomenon is known as refraction.

For information only :

* When the characteristics of a medium are same at all points, it is said to be homogeneous.
When the characteristics are same in all directions it is said to be isotropic.

e If a medium is not homogenous then a light ray continuously gets refracted and its path is
curved.

o If the medium is not isotropic light ray refracts by different amount in different directions.

Laws of Refraction :

(1) The incident ray, refracted ray and the normal drawn to the point of incidence are in the
same plane.

(2) “The ratio of the sine of the angle of incidence to the sine of the angle of refraction for
the given two media is constant.” This constant is called relative refractive index of the two
media. This statement is known as the Snell’s law.

[}
e diumN v on If 0, is the. angl.e of 1n.01dence (in medium-1) and O, is the
angle of refraction (in medium-2) then,
medium-2 g
sinf,
sin92 = n2], (661)

Figure 6.4 (a)
where n, 1is known as the refractive index of medium-2 with respect to medium-1.
n,, depends on the type of media, their temperature and the wavelength of light.
Relative refractive index may also be defined in terms of speed of light in two media.

Al

- (6.6.2)

21 Vs >

where v, = speed of light in medium-1

and v, = speed of light in medium-2.
Similarly, refractive index of a medium with respect to vacuum (or in practice air) is

n=2%. (6.6.3)

1%

Here, n is known as absolute refractive index. Now,

V. n
1 < Y 2
n, = - = X = = —= 6.6.4
21 V2 V2 c nl ( )
equation 6.6.1 becomes,
I n o sinf,
21 n, sinf,
or n;sin®, = nsinb, (6.6.5)
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This equation (6.6.5) is known as general form of Snell’s law.

For given media, if n, > n

s 6, >0,

When a light ray enters from optically rarer medium to optically denser medium, angle of
refraction is smaller than the angle of incidence, and the ray bends towards the normal.

If n, < n = sin, < sin,

-0, <9,

When a light ray enters from optically denser medium to optically rarer medium, angle of
refraction is greater than the angle of incidence, and the ray bends away from the normal.

| = s1n91 > sme2

The medium with greater refractive index is called optically denser medium and the one with
smaller refractive index is called optically rarer medium. This optical density is different from the
mass density.

Refraction Through Compound Slab :

As shown in figure 6.5, if light passes through a compound slab, refractive index of medium-
3 with respect to medium-1 can be written as

v n<on, < n,
n = n
31 V3 1
LLE]
=2 a - 6.6.6 :
= 50 X 50 = Ny, Xony, (6.6.6)
3 2
Also, n.sin®, = n,sinf, = n,sin6, (6.6.7) . "3
v 1
d a1 L
and n,, = vy v, - onyp, Figure 6.5 Refraction Through
- Compound Slab
Vi
o, Xon, =1 (6.6.8)

For information only : The visibility of a transparent medium is due to the difference in its
refractive index from that of the surrounding medium.

6.6.1 Lateral Shift : As shown in the figure 6.6, P
light rays undergo refraction twice, once from top )
(AB) and then from bottom (CD) surfaces of a given A n, B
- 3
homogeneous medium. The emergent ray is parallel to g . 8,79y
C

PQR'S' ray. Here, PQR'S"' is the path of light ray

in absense of the other medium.

[ £

Since the emergent ray is parallel to the incident

ray but shifted sidways by distance RN. This RN

distance is called lateral shift (x). We can now

el ettt

calculate this lateral shift as follows :

Let n, and n, be the refractive indices of the

rarer and denser medium, respectively. Also, n, <n,
Figure 6.6 Lateral Shift Due to Rectangular

From the figure, ZRQN = 6, — 6,, RN = x. Slab
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From AQRN, sin(®, — 0,) = QR ~ OR (6.6.9)

QT

In AQTR, cos6, OR

) QT t
- QR = cosh, ~ cosb,

X

. from equation (6.6.9), sin(6, — 0,) = [ ; j

cos0,

t-sin(0, —0
ox = £sin®, 29,) (6.6.10)

cost,

Since angle of incidence 91 is very small, 62 will also be small.

. sin®, — 0) = (0, — 0) & cosb, = 1

_ 10,76y
B 1
0,
x =19 I-5= (6.6.11)
1
. , n sinf, 0,
But according to Snell’s law, ”_1 = S0, = Q

. From equation (6.6.11),

n
x =1, l—z

6.6.2 Real Depth and Virtual Depth : Another manifestation of lateral shift is the apparant
depth or hight seen through transparent medium.

As shown in figure 6.7, an object O is

kept at depth h, in a denser medium (e.g.

water) with refractive index n,. In figure

’]’ i e 6.7(b) Ray OQ on refraction moves along QE
l’ i R, at the interface. If EQ is extended in the
: denser medium it meets the normal PN at
) point 1.

o

. . . So the observer sees the image of object
(a) Normal Incidence (b) Oblique Incidence .
O at position 1. Here, PO = h0 = real depth
Figure 6.7

of an object.
PI = h;, = virtual depth of an image.

From figure 6.7(a) even when 91 =0, ho # hl. (You will see this as a case of equation (6.8.10)).

But as 91 increases h; becomes smaller compared to /. Also, the object appears curved when

viewed obliquely through the refracting medium.
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6.6.3 Real Height and Virtual Height :

E
E};P’
0 n1<n2

h, = Real Height

Suppose an observer (e.g., fish)

is inside a denser medium (e.g.,

water). It sees the eye (E) of a

person at point E' instead of E. i.e.,
h; = Apparent Height

object is appeared lifted up
(figure 6.8).

<wZms< (Observer)

Figure 6.8 Virtual Height

Illustration 4 : Assuming that the angle of incidence at a refractive surface is sufficiently small,
derive the relation between real depth, apparent depth and refractive index.

Solution : In figure 6.7, refractive index of denser medium = n, and refractive index of rarer
medium = n,. Real depth of the object O is PO = h,. Depth of the image, i.e., apparent depth
of the object = PI = h,

Applying Snell’s law at point Q,

n,sin®, = n sind,

For nearly normal incidence, 6, and 0, are very small.

. sin@ = O = tan0®
n,tand, = n tand,
_PQ _ PQ _ PQ _ PQ
But, tane2 = %0 = Iy and ‘[ane1 = D
. .. . PQ PQ
Using this in equation (1 n(—J zn(—]
ing this in equation (1) 2\ g, w2
ok K m n(rarer)
n — h = hy — ny, T n(denser)

Note : It can be proved that if an object kept in a rarer medium, at height A from the interface,

is viewed normally from the denser medium and it appears to be at height &, (h, > h), then

& n(denser)
ho n(rarer)

Illustration 5 : A swimmer is diving in a swimming pool vertically down with a velocity of 2
m s~!. What will be the velocity as seen by a stationary fish at the bottom of the pool, right below
the diver ? Refractive index of water is 1.33. ,

Solution : In the figure, vertical distance 2m is shown L B g
by AB. The height of A from the surface of water is A, i ' m '
Suppose it’s apparent height is &, (h, > h). Air | A_r hy
h. :
ﬁ _ n(water) ! Vlo
h n@o, e e U
oy = hy X 133 W)
Now the real height of B, h," = (h, + 2)m oo ==
o e b s 2 -Water
. if it’s apparent height is o', then @~  seessswe—msesowosewes
B n(water) eI
ho' = n(air) = 1.33 Fish
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. h',=h,' x 133
= (h, + 2) X 1.33 2)
From equations (1) and (2), the apparent distance, seen by the fish
=h; —h = (hy+2) X133 - h, X 133
=2 X 133 =266 m
1

So the fish will see the swimmer falling with a speed of 2.66 m s .

6.7 Total Internal Reflection

When light ray enters from one transparent medium to another, it is partially reflected and
partially transmitted at an interface. This is true even if light is incident normally to a surface
separating two media. In this case, intensity of reflected light is given by

2
I =1, (ﬂ] (6.7.1)

I, = intensity of incident light
I = intensity of reflected light.

refractive index of the medium—1

N
I

n, = refractive index of the medium—2
For air (n, = 1.0) and glass (n, = 1.5), I is 4% of the incident intensity. It is to be noted that

equation 6.7.1 is true for normal incidence only. For other cases, I also depends on the angle of

incidence.
Here, A is a point object (or a light source) in

a denser medium. Ray AB, AB,, AB, .. get
partially reflected and partially transmitted at points
B, Bl, B2 ... at the interface. It is observed that as
the angle of incidence increases (going from

Partial Reflection

B — B, —» B, — ...) the angle of reflection ray
Optically Denser glsc.) increases. It happens that at particular angle of
Medium () ) incidence, refracted ray moves parallel to the surface
separating two media. For this particular case, angle of

Total Reflection

Source

Figure 6.9 Total Internal Reflection . . o
refraction is 90°.

The angle of incidence for which the angle of refraction is 90° is called the critical angle (C)
of the denser medium with respect to the rarer medium.
In this situation the interface appears bright. Using Snell’s law for the critical angle of incidence,

n]sinﬂ1 = nzsine2
when 91 = C, 92 = 90°
. nlsinC =n,

)

. sinC = 7

If rarer medium is air, i.e. n, = 1

1
.sinCzn_lzi(Letnlzn)

or € = sin (1) (6.7.2)
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At the critical angle, the reflected ray is known as the critical ray.

Now if the angle of incidence is increased slightly more than the critical angle, the intensity of
reflected light immediately increases, and the incident ray gets completely (i.e. 100%) reflected back
into the denser medium. This is called total internal reflection. It is true for any of incidence greater
than the critical angle. In this situation, the surface separating the two media behaves like a perfect
mirror. It is to be noted that the total internal reflection obeys the laws of reflection.

For Information Only :

When total internal reflection is studied with respect to electromagnetic waves, it is found that
a very small portion of incident light enters into the rarer medium upto a distance equals few
wavelengths. Though, its intensity is diminutive. This in quantum mechanics is called tunneling
effect.

Illustration 6 : As shown in figure, a ray of light is incident at angle of 30° on a
medium at y = 0 and proceeds ahead in the medium. The refractive index of this medium

varied with distance y as given by,

ny) = 1.6 + 0 2)2 where y is in cm. What is the angle formed by the ray with the normal

(y+1
at a very large depth ?
Solution : Suppose the angle is O at distance y in the medium.

Appyling Snell’s law at this point,

n(y)sin@ = C, where C = constant €))
This formula is true for all the points. |
Applying it to point O, 30"
|
n(0)sin30° = C 1
_ j
y=20
But, n(0) = 1.6 + —225 = 1.8 o\ Medium
0+1) \
M
L 18 x 3 =C R
y o
. C =09 1
Putting this value in (1), n(y)sin® = 0.9

0.2 . . 0.9
1.6+ —=— = : =~ 07
{ (y+1)2}szn9 =09 .. sin6 = Loq_ 02
(y+D?
When y is very large, taking y — oo; we get sin@ = %

S0 = 34° 14"

6.7.1 Uses of Total Internal Reflection :

(1) The refractive index of diamond is 2.42 and its critical angle is 24.41°. Thus, with proper
cutting of its faces, whatever the angle at which light enters into the diamond, it undergoes many
total internal reflections. Hence it looks bright from the inside, and we call the diamond is sparkling.

(2) For a glass with refractive index 1.50 has a critical angle for an air-glass interface,

C = sin”! (ﬁ) ~ 42°
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This angle is slightly less than 45°, which makes possible to use prisms with angles
45°-45°-90° as totally reflecting surface. (See figure 6.10).

Incident Ray
C—

B
Reflected
Reflected Ray
Ray

(a) (b)
Figure 6.10 Totally Reflecting Prisms

The advantages of totally reflecting prisms over metallic reflectors are (1) superior reflection and
(2) the reflecting properties are permanent and not affected by tarnishing.
(3) Mirage : In summer, due to heat, the air in

Reggggvel Cold AirT 2 contact with the ground becomes hot while above it is
Decreases cooler. Thus, air in contact with the ground is rarer and
q%l air above is denser. i.e., its refractive index increases as
“"“..H__ dense air one moves upwards. As shown in the figure 6.11, a ray

“"u-‘_ going from the top of the tree (D) to the ground is

1' travelling continuously from a denser medium to a rarer

D' medium. As it comes closer to the ground its angle of

Figure 6.11 Mirage Formation refraction increases and finally it undergoes total internal

reflection, and enters into the eye of an observer.

Thus, the image of D appears at D' to an observer, giving a feeling of image in a water surface.
This phenomenon is called a mirage.

(4) Optical Fibres : The phenomenon of total internal reflection is used in optical fibres. They
are made of glass or fused quartz of about 10 to 100 um in diameter. They are in the form of long
and thin fibres. The outer coating of the fibres (cladding) has a lower refractive index (n,) than
the core (material) of fibre (n,). Here, n, > n,.

In absense of the cladding layer, due to dust particles, oil or other impurities, some leakage of
light may take place. In 1 m distance, in fact, light gets reflected thousands of times. Thus, if
leakage occurs, light cannot travel far. Such leakage is prevented using cladding.

Fused quartz is usually used for making optical fibres because of its high transparency.

Cladding In figure 6.12, a ray is incident at an angle
(Optical Rarer)

0. to the axis of a fibre from air. Gf is the angle
of refraction. The refracted ray makes an angle

Gf with the axis of the fibre. As shown in the

Incident Optical Fibre figure, this ray is incident on the wall of the

Ray : fibre at an angle (90° — f). It is clear that if
Eml‘zrgem angle (90° — Gf) is greater than the critical angle

ay . . . .
Figure 6.12 Schematic Diagram of for fibre cladding interface, the ray will undergo
Optical Fibre a total internal reflection. In short, the greater
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the value of (90° — f) the greater is the chance for total internal reflection. That is, a small value
of Gf is preferable. This also suggests that smaller the value of O, the greater are the chances of

total internal reflection. Thus, for a given fibre the value of O, should not be greater than some
particular value.

The above condition for total internal reflection can also be discussed in terms of the refractive
index of the material of the fibre.

We have seen that the value (90° — Gf) should be greater than the critical angle. Thus, the
smaller the value of critical angle, the more are the chances of total intermal reflection.

Now, sinC = % relation shows that n should be large in order to have small value of C. Thus,

the material of an optical fiber should have value of n more than some minimum value. In our
discussion we have taken the medium outside the optical fiber as air.
6.8 Refraction at a Spherically Curved Surface
Images can be formed by reflection as
well as by refraction. Here we study the
refraction at a spherical surface, i.e., at a
spherical interface between two transparent
media having different refractive indices. In
the following discussion, we shall study
refraction of paraxial rays at a spherically
curved surface. This will help us to understand
the image formation by lenses, though lens has

two refracting surfaces. We will follow Figure 6.14 Refraction Due to Conve Curved
cartesian sign convention in our discussion, Surface

and the spherical surface as a very small part

of the sphere.

As shown in the figure, O is the centre of the refracting surface, C is the centre of curvature,
OC is the radius of curvature. A point object P is kept at a distance u from O on the principal axis.

To form image after refraction, consider two rays PO and PA from point object P.

For ray PO, angle of incidence is zero. Therefore, according to Snell’s law this ray will move
along OCP' without bending.

Ray PA is incident at point A on the surface. AC is the normal to the surface at point A. 6,
is the angle of incidence. Suppose the refractive index (n,) of the medium-1 is less than the
refractive index (n,) of the medium-2. As a result, the refracted ray bends towards the normal and
moves along AP'. Let o, P and y be the angles made by PA, CA and P'A respectively with
principal axis.

Both refracted rays OP' and AP' meet at point P', and forms point like image of an object

P. Here, 0, is the angle of refraction.
Applying Snell’s law at point A,

n;sinf, = n,sinG, (6.8.1)
Since we are considering paraxial rays, 91 and 92 are small (measured in radian)

. n0 =nb, (6.8.2)
From figure, 0 is the exterior angle of APAC.

0 =0+ B (6.8.3)

Similarly, angle B is exterior to ACP'A.

Ray Optics - 213



~B=6,+y

.0, = B -y (6.8.4)
Using (6.8.3) and (6.8.4) in equation (6.8.2),

n+ B =nP -7

no + ny=(n, — n)B (6.8.5)

From right angled triangle O'P'A, tany = y = vil A (6.8.6)

where v = image distance

From right angled AO'CA, tanf} = B = ﬁ (6.8.7)
' . _ h

And from APAO', tan0l = O = e (6.8.8)

where u — —u, object distance, as per the sign convention.
The curved surface considered here is a very small part of the sphere from which it is cut.
Thus, A is negligible compared to R, u and v.

ay=Lt Bp=2L mdo=L (6.8.9)
Combining equations (68.5) and (689), n, (L] + m,(4) = (1, = n). &

R R i)

L . (6.8.10)

Equation (6.8.10) is valid for concave surface also. Equation (6.8.10) is the general equation
which relates object distance, image distance and radius of curvature of the curved surface. This
equation is derived for the ray travelling from rarer medium (with refrective index ”1) to the
denser medium (with refrective index nz). In the similar way when the ray travels from denser
medium (with refrective index "2) to the rarer medium (with refrective index nl), we can
derive the following equation using Snell’s law.

—n n n,—n

- 3= (IR .

Case : If surface is plane (plane glass slab).

(6.8.11)

. . +
i.e. R = oo, Therefore equation (6.8.10) becomes % = %2
v _ " _ K . -
or = = = (see the topic of magnification).
1

Whether the image is real or virtual is decided by the sign convention. If image distance is
positive, i.e., image is formed on the right of point O, it is real or otherwise.
6.9 Spherical Lenses

In general, a lens is an image forming device, having two bounded refracting surfaces. Of the
two surfaces at least one surface is curved. For example, the following figure depicts different types
of lenses.

Biconvex  Plano- Lens with Biconcave  Plano-
or Convex Meniscus or Concave
Convex Cancave

Figure 6.15 Different Type of Lenses
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Since spherical surfaces are easy to construct, we first consider image formation by a spherical
lens or crystal ball as strategic example.

[

(@ (b) (c)
Figure 6.16 Focus of Thin Lens

If a point object is placed on the principal axis of a convex lens such that the rays refracted
are parallel to the axis figure (a), then the position of the point object is called the first principal
focus (F)) of the lens.

If the object is situated at infinite (figures (b) and (c)), refracted rays meet (or appear to meet)
for convex (or concave) lens to a point (F), then the position of this point is known as second
principal focus (F).

The geometrical centre of the medium of the lens is called its optical centre (C).

Distance of principal focus from the optical centre (C) is known as focal length (f) of the lens.

As per the sign convention, f is positive for convex lens and negative for concave lens.

Ilustration 8 : Obtain the expression for image distance in terms of the radius of curvature

for crystal.
Solution : Here, the rays coming from point object P are n < n,
. ' D Principal
refracted twice at surfaces DOE and DO'E, n Axis

respectively, before forming the final image. But for
the sake of understanding, we consider both the
refraction separately. Using the formula for spherical
surface (equation 6.7.10) at both the surfaces we can

determine the position of the (final) image.
At the surface DOE,

(We have used Cartesian sign convention.)
Let u > R. In this case, v' will be large and positive. That is, image of P due to spherical
surface DOE will form at point P' on the right and far from the ball.

Now, for surface DO'E image P' will behave as virtual object. Therefore at the surface DO'E,

L N U (e i
“o-m) v T ( R ) @
Since v' is very large, (v' — 2R) is positive. This gives v to be positive, i.e., the final point

image will form on the right of the surface DO'E.
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O = Object 6.9.1 Thin Lens : The lens for which
O = Virtual Object

for Surface-2
I = Image surfaces is negligible as compared to the object

- distance, the image distance and radius of
. curvature is called a thin lens. In general, radii
n s ! of curvatures of the two refracting surfaces
Principal need not be equal. Being thin lens, the distance
Axis can be measured from either surface or even
T from the centre of the lens.

To obtain the relation between object
distance, image distance and radii of curvatures

the distance between the two refracting

0

-
-

.3 ¥ *

L
-
L

for thin lens consider the following case as
Figure 6.17 Image Formation Due to Thin Lens shown in the figure 6.17.

To understand, how final image due to thin lens is formed, assume that the two refracting
surfaces are separated. Thus, the final image (I) is assumed to be formed due to two refractions
at curved surface-1 and then due to surface-2, respectively.

The object O is in the medium having refractive index n. The incident ray OQ is refracted
at surface-1 into the denser medium with refractive index n,. (Here n, > n)). The image is formed

at O'. For the refraction at surface-1 using equation (6.8.10), we can write,

_ n (n,—n,)
s " (6.9.1)
Here, u = object distance and v, = image distance.

This image O' serves as virtual object for surface-2. For surface-2 the ray QQ' travelling from
denser medium is refracted into rarer medium and meets the axial ray from O at I. Thus I is the
final image. For refraction at surface-2, using equation (6.8.11), we can write,

Ny o y=ny) o (my—ny)
v, v = TR, T TR, (6.9.2)
Here, v, = object distance for surface-2 and v = image distance.
Adding equations (6.9.1) and (6.9.2), we have
-n 1 1
B ()
1 1 Lo L1

Equation (6.9.3) is the disired equation. While using it in practice, proper sign convention should
be employed.

6.9.2 Lens-Maker’s Formula

If medium on both sides of a lens is same, and object is at infinite (i.e., 4 = o) then v = f.
From equation (6.9.4)

1 1 |(RTh)fL_1
fooe " R, R,

n,—n
b= (54 (694

Equation (6.9.4) is known as lens-maker’s formula. It is named so because it enables one to
calculate focal length and radii of curvatures of the lens.
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When equations (6.9.3) and (6.9.4) are compared, we have, % - % = % (6.9.5)

This equation is known as Gauss’ formula for a lens.

From equation (6.9.4), if the lens turns around, i.e. R, and R, get interchanged, then also for
proper change in sign, f will be found to be same. Therefore, for a thin lens the focal length is
independent of the order of the surfaces. If medium-1 is air (i.e., n, = 1) and let refractive index

of medium-2 be n, = n, equation (6.9.4) becomes

b oot 609

For information only : Most general form of lens—maker’s formula is,

1 _ 11 n=l) _t .
f = (n - 1)'(R1 RZ] + ( n ) RIIRZ’

where ‘f’ is the thickness of the lens. For thin lens 7 is negligible and equation (6.9.6) can
be recovered. Above equation also suggests that for thick lens, i.e., # is large, and R, and R,

are small, second term contributes significantly. Thus, for thick lens f is small, i.e., thick lens
converges or diverges strongly.

6.9.3 Newton’s Formula : As we have observed that lens-maker’s formula relates radii of
curvatures and refractive index of the lens to its focal length. We can also derive an expression
relating focal length to image and object distances, which we call lens user’s formula or Newton’s
formula.

On the left of the lens, AABF, and ACF,P'
are similar triangles. Therefore,

h h
¥ =7 (witing only magnitude) ~ (6.9.7)
1

Similarly, for right of the lens,

hl
7 = % (6.9.8)
f2 X

Figure 6.18 Extra Focal Distances of a Convex Lens

h
Writing combinedly for the ratio h—',
2

Iy I é
hy =7 T % (6.9.9)
X ex, =1 f, (6.9.10)

Equation (6.9.10) is known as the Newton’s lens formula. Here, x and x, are known as
extra focal object distance and extra focal image distance. Since these distances are measured
from focii rather than from the lens, Newton’s formula can be used equally for thin and thick lenses.

When f, = f, = f (say), equation (6.9.10) becomes

x - x, =f (6.9.11)

1 2
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6.9.4 Conjugate Points and Conjugate Distances

) As shown in the figure 6.19, all the rays
Side 1

A

Side 2 from point A and B are brought to focus at

poins A' and B', respectively. Thus, A'B' is
i B the image of an object AB. The principle of

- reversibility for light rays permits interchange in
¥ . positions of image and an object. That is, if

A A'B' is an object, AB becomes the image.

4 Thus, object and image are conjugate. Points A

1 1 .
Figure 6.19 Conjugate Points and Distances and A', and B and B are called conjugate

points.

Now, by keeping image distance as the object distance image will form at the object distance.
That is, image and object distances are conjugate distances.
6.10 Magnification

Convex lenses are used properly to form a magnified image.
size of the image
size of the objegct (6.10.1)

Since for three-dimensional object the image will also three dimensional, correspondingly we have
three types of magnifications. Lateral magnification, longitudinal magnification and angular magnifica-
tion. We discuss only the lateral magnification below.

Lateral Magnification

Lateral magnification is also called as transverse magnification. It is defined as the ratio of height
of an image (h,) to that of the object (k) from the figure 6.18,

Magnification, m =

Iml = % (6.10.2)

According to Cartesian sign convention, height measured above the principal axis is taken positive
and below the principal axis it is negative. Hence, the lateral magnification is positive for erect image
and negative for a inverted image. Also, from the figure 6.18,

= hT (only magnitude)

u
h
“om o= Ez =2 (6.10.3)
From equation (6.9.10),
h2 fl Xy
m = BT W T 72 (6.10.4)

6.11 Power of a Lens

It is defined as the converging or diverging capacity of a lens. General form of lens-maker’s
formula suggests that the thicker the lens, smaller is the focal length and higher is the convergence
or divergence. Thus, converging or diverging ability of a lens is inversely proportional to its focal
length.

*. Power of a lens, P = % (6.11.1)

For convex lens power is positive, while for the concave lens it is negative.
Its SI unit is m™' or diopter (D).
ie, ID =1 m!

When an optician prescribes lens of + 2.0 D, it means a convex lens of focal length = % =05 m.

218 - Physics-1IT



6.12 Combination of Thin Lenses in Contact

Consider a simple optical system that Ly L,
consists of two thin lenses L, and L, in
contact and placed on a common axis. Their Pl ST ———
focal lengths are f, and f, respectively. For o] s o —y

such an optical system, we assume that the
image formed by the first lens becomes the
object for a second lens, and we get final
image due to the system. We now derive
formula for focal length of this equivalent lens
as follows.

From the figure 6.20, consider a case of point like object (O) whose final image (I) is formed
due to two thin lenses in contact.

A
=
L

L
e
L ]

Figure 6.20 Combination of Thin Lenses

Using Gauss’ formula for lens L, —% + % = % (6.12.1)
1
1 1 1
For lens L, —3: + 3 = Tz (6.12.2)
Adding these equations, —% + % = % + fL (6.12.3)
1 2

If we assume that the final image is formed by a single equivalent lens of the focal length
f, then

1ol (6.12.4)
1 1 _ 1
71 + 7, = 7 (6.12.5)
B fl'f2

or f= Tper,) (6.12.6)

Equation (10.12.5) or (10.12.6) is the algebraic relation between f]’ f2 and f. While using them
to find equivalent focal length for different combinations of lenses, proper sign convention should be
adopted.

If there are n number of thin lenses in contact, equivalent focal length of them is given by,

1 1 1 1

= 71 + Tz + ...+ E (6.12.7)

Lenses with Separation : If two thin lenses are not in contact, but having some separation
d, then equivalent focal length can be written as,

1 1 1 d

- -1 4,1 _ _a (6.12.8)
FTT YL TR

Also, d — (f, + f) is known as the optical interval between the two lenses.

Power :

But fil = P, = power of lens L,

flz = P, = power of lens L,
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Therefore, from equation (6.12.8), equivalent power of the combitation is
P=P +P, + .. +P (6.12.9)
Lateral Magnification

For two-lens system lateral magnification due to lens L, is m, = vﬁ
That due to lens L, is m, = 3
v

If resultant magnification is m, then
m=2 =X x X

u u 1%
m = m, X m,
For n number of lenses, m = m; X m, X ... X m (6.12.10)

Equation (6.12.10) suggestes that in order to improve magnification one may use combination of
lenses (e.g., compound microscope).
6.13 Combination of Lens and Mirror

The combination of lenses are important for achieving proper magnification, focussing of image
at a desired point, etc. Similarly combinations of lenses and mirrors are also useful. We consider one
such combination of convex mirror and convex lens.

O = Object As shown in the figure 6.21, image (O') is

formed on the same side of the object. For a given
object distance (1), we adjust the mirror distance (d)
from the lens in such a way that the image is formed
at the object position itself (i.e., parallax between an
object and image is removed). In this case, rays
incident on to the mirror will be normal to the mirror.
In absense of the mirror the image would have been
formed at C. Its distance from the lens is v. Since
rays falling on the mirror are normal, point C is the
centre of curvature for the mirror.

Thus, by measuring v and d, we can find focal length of the mirror as,

f=8%=30-a

IMlustration 9 : A converging lens of focal length 15 cm and a converging mirror of focal length
20 cm are placed with their principal axes coinciding. Point object is placed at a distance 12 cm
from the lens. Refracted ray from the lens gets reflected from the mirror, and again refracted by
the lens. It is found that the final ray coming out of the lens is parallel to the principal axis. Find
the distance between the mirror and the lens.

Solution

o' = Image

Figure 6.21 Focal Length of a Convex
Mirror Using a Convex Lens

Focal point of lens Applying Gauss’ formula to lens,

F = Focal point of mirror 1 1 _ 1
“u Ty T

11

v =F tu

u-f  (=12)x15)
u+f T T -12+15

Vv =

(Using cartesian sign convention)
= —60 cm.
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Negative sign indicates that image (O") is virtual. This image works as an object for the mirror.
For mirror, object distance,

u'=0'0" +O0"P' = (PO" + PO') + O"P'

= (60 + 15) + x = (75 + x) cm (for mirror, PO' = v is taken positive)

Since image due to mirror is obtained at 0", its distance from the mirror is X.

Applying Gauss’ formula to the mirror,

1 11

ut v =7
1 1 _ 1
75+ T = T =f
(75+2x) 1

Simplifying , T5+0-x = 20

. x>+ 35x — 1500 =0
. x =25 cm or x = — 60 cm.

Thus, physically acceptable solution is 25 cm. Therefore, distance of the mirror from the lens
is =25 + 15 = 40 cm.

Ilustration 10 : Distance between an object and a screen is d. Prove that for a thin convex
lens, there are two positions for the object at which image can be obtained on the screen, and under
certain condition only. Derive the condition for the same. When will the image not be formed ?

Solution : Suppose the object distance is u,

For a convex lens u is negative. So,

_ 1
- f

But, u + v = d (given)

NI

1
v +

v=d—-u

u+d-—u 1

ud-uy = f
“uw—ud + fd =0
This is the quadratic equation for variable u. It’s roots are as given below :

_ dtyd-4fd

B 2

Thus, if d > 4f, two values of u are possible and if d < 4f, u will be a complex number and
hence the image will not be formed.
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Illustration 11 : Decide the position of the image formed by the given combination of lenses.
Solution : For the image formed by first lens.

f: +10 —=10 +30cm

1 1 1
w oo T
Oe f
€ 30 em
11 _ 1
: . | =30 10
5 em 10 cm
* v, =15 cm

Thus image formed by the first lens is formed at 15 cm distance on the right-hand side. This
image is on the right-hand side of the second lens at 15 — 5 = 10 cm distance and so it acts as
a virtual object for the second lens.

Now for the second lens,

1
Vs 10

This distance v, (= o) is the object distance for the third lens. So, the third image formed due
to it should be on the principal focus of the third lens. Thus, as the focal length of the third lens
is 30 cm, the final image is formed at 30 cm distance on the right side of the third lens.

Illustration 12 : For a thin lens prove that when the heights of the object and the image are

equal, object distance and image distance are equal to 2f.
Solution : Here, | h | = | h' |
clvIi=1ul
Using the equation for lens

11 _ 1
v u—f
11 _ 1
v —u—f
1 1 1
w t v =7
2 1
v ©f
Sy =2f
“u=v =2

Here, the points at 2f distance on both the sides of the lens are called conjugate focl.
Ilustration 13 : Two converging lenses of powers 5D and 4D are placed 5 cm apart. Find
the focal length and power of this combination.

Solution : Focal length of first lens, f, = % =02 m=20 cm
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Focal length of second lens, f2 = % =025 m =25 cm

Distance between two lenses, d = 5 cm
Now, equivalent focal length of this combination is

1 1 d

1 - —
LT LT,

it X
f= (fl+f2)—d = % = 12.5 cm
And equivalent power is given by,
P =P + P) - dPP,
= + 4) — (0.05) X (5)4) (d is written in meter)

. _ 1 1
.P=8DorP= 7 =575 =8D

6.14 Refraction and Dispersion of Light due to a Prism

As shown in the figure 6.22, the cross-
section perpendicular to the rectangular surface
of a prism is shown. A ray PQ of monochromatic
light is incident at point Q on the surface AB.
According to Snell’s law, it is refracted and
travels along the path QR. Thus, it deviates from
the incident direction by an amount 51. This ray
QR is incident on the surface AC at point R,
and emerging out as a ray RS. It suffers a
deviation 0,. By extending the incident ray PQ
to PQE, total deviation between the incident and
the emergent ray is found. When the emergent
ray RS is extended backword it meets PE at D. Figure 6.22 Refraction Due to Prism
Angle between the incident ray and the emergent

ray is called the angle of deviation, .
From figure 6.22, in OAQLR, ZAQL and ZARL are right angles.
. mZA + mZQLR = 180° (6.14.1)
and for AQLR, r, + r, + mZQLR = 180° (6.14.2)
Comparing above equations,
r,+ r, + mZQLR = mZA + mZQLR
.rt = A (6.14.3)
For ADQR, ZEDR = ZEDS = 0 is the exterior angle. Therefore,
d = ZDQE + ZDRQ

S0 = 81 + 82 (6.14.4)
But 81 + r, = i (" vertically opposite angles)

. 81 =i-r (6.14.5)
Similarly, 6, = e — 1, (6.14.6)

LO0=(@—-r)+e—-r)y=>G§+e —(r,+71)
Using equation (6.14.3)
O0=i+e—A ori+e=A+29 (6.14.7)
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3

i i=e N

Figure 6.23 Variation of Deviation

with Angle of Incidence

.
e

| —

Equation (6.14.7) gives the relation between angle of
deviation, angle of incidence and angle of emergence and
the prism angle. It is known as an equation for prism.

It is clear from the above equation that the angle of
deviation depends on the angle of incidence. For the sake
of understanding, the graph of the measured values of
angle of deviation against corresponding angle of incidence
for an equilateral prism is shown in the figure 6.23.

We can see from the graph that for two values of
angle of incidence (i, and i) angle of deviation 0 is

same. This can be understood from the reversibility of the
rays.

If the incident ray is SR instead of PQ, then the refracted ray will follow exactly the reverse
path, i.e., SRQP, and the emergent ray becomes PQ. In this case also, however, the angle of
deviation remains the same. But for a particular value of angle of deviation there exists only one
value of angle of incidence. And experimentally, it is found that this angle of deviation is minimum
(0,;)- In the condition of minimum deviation of the incident ray the angle of deviation is called the

angle of minimum deviation (Sm). In this situation it is found that i = e.

From equation (6.14.7),

Sy =i+i—A=2-A

A+96,

i = 3 (6.14.8)
Applying Snell’s law at pont Q,
nsini = ngsinr, (6.14.9)
At point R, considering SR as the incident ray,
n;sine = n.sinr,
As i =c¢
S.onsini = nsinr, (6.14.10)
From equations (6.14.9) and (6.14.10)
Lr =0, (6.14.11)
From equation (6.14.3), and let r, r,=r
r+r=A
r=2% (6.14.12)
Substituting the values of (6.14.8) and (6.14.12) in either in (6.14.9) or (6.14.10),
This gives,
A+6, A
.nsin| T3 | = nzsin(
. [A+6,,
sin
n, 2
or @ = A (6.14.14)
sin | —
3)
If the prism is kept in air, ie. n, = 1 and n, = n,
. [A+6,,
sin )
. n= 6.14.15
sin(é) ( )
2
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Equation (6.14.15) shows that value of 5m depends on the angle of prism. The refractive index
of the material of the prism and the medium in which prism is kept.
For equilateral prism, when & is minimum, refracted ray (QR) through the prism is parallel to

the base BC of the prism. Equation (6.14.15) is of practical importance to measure refractive index
of the material of the prism.

Case : The prisms with small angle of prism are called thin prisms. For such prisms, angle of
deviation is also small. In this case equation (6.14.15) gives

O = An — 1) (6.14.16)
Dispersion
\ Screen
Rl
Ulramge
Yiedlow
Lireen
Bl
Indigo
Viodet
l 2
Figure 6.24 Dispersion of White Light Figure 6.25 Dispersion and Recombination of

White Light

As shown in figure 6.24, when a beam of white light or sun light passes through a prism the
emergent light is made up of different colours. To understand this phenomenon, Newton has arranged
two identical prisms as shown in figure 6.25. A ray of white light is incident on the prism-1, and
emergent ray from the prism-2 is observed. It is found that this emergent ray is also white. This
experiment explains that the first prism disperses the colours of white light, while the second prism
brings them together.

The phenomenon in which light gets divided into its constituent colours is known as dispersion
of light.

It is found that for the visible part of the electromagnetic spectrum violet colour has the
maximum refractive index and red colour has the lowest. From equation (6.14.16), corresponding
minimum angle of deviation through the same prism is

It is now clear that as n, > n, o, > 9.

Thus, deviation of violet colour is more compared to the deviation of red colour.

The total angle through which the spectrum is spread is called as the angular dispersion. It is
defined as,

0=9,-98=m —n)- A (6.14.17)

For example, the spectrum obtained by a prism made up of flint glass is wider, more dispersed
and more detailed as compared to the one obtained by common crown glass.

Ilustration 14 : For a prism, angle of prism is 60° and it’s refractive index is 1.5, find (1)
angle of incidence corresponding to the angle of minimum deviation and (2) angle of emergence for
angle of maximum deviation.

Solution : (1) For minimum deviation,

r,=r,and A =r +71,
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. n sin r,= sin 1
*. 1.5 X sin 30° = sin i
. 1.5 X 05 = sin

Q= 48° 35'
(2) For maximum deviation, i = 90°

sin 90°
sin n

w15 = 7, = 41° 48’

. r2=A—r1=60—41°48':18° 12" ¢ r,+or, = A
1.5 sin r, =sin e( n sin r, = sin e)

o 1.5 X sin 18° 12' = sin e

. sin e = 0.4685

e =27° 56'

Illustration 15 : An equilateral prism is kept in air and for a particular ray, angle of minimum
deviation is 38°. Calculate the angle of minimum deviation if the prism is immersed in water.

Refractive index of water is 1.33.

. (60+38)°
n s1n(—)
Solution : 7o = _\ 2 J
“ sin 30°
Taking n = 1,
no= S _ 509
8 sin 30

When prism is immersed in water,

60+5 \
sin 5 m
e _

"o sin30°
But n = 1.33
. (60+5, Y
= 2
0.5
(6045, )
sin 3 = 0.5679
60+ 6
mo = 34° 36"
2
" Oy, =90 12
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6.15 Scattering of Light

Light scattering is one of the two major physical processes that contribute to the visible
appearance of most of routine objects, the other being absorption. Broadly, scattering can be
classified either as elastic or inelastic. Natural occurrence like, colour of sky during sunrise or sunset
and during day time, colour of clouds can be understood by elastic scattering of light due to
atmospheric atoms, molecules, water droplets, etc. Light falling on such particles is absorbed by them
and immediately radiated in different amount in different directions. As a result, part of the intensity
of light ray is diverted to different directions in different proportions.

It is found that the intensity of scattered light depends on the ratio (0) of the size of the particle
(i.e. its diameter, for spherical particles) and wavelength of the light.

If oo << 1 : Scattering is known as Rayleigh scattering
. o = 1 : Scattering is known as Mie-scattering.
. o >> 1 : Geometric scattering.

6.15.1 Rayleigh Scattering : If the size of the particle which scatters the light is smaller than
the wavelength of the incident light, the scattering is known as Rayleigh scattering.

Lord Rayleigh showed theoretically that the intensity of scattering is inversely proportional to the
fourth power of the wavelenght of light. Since the wavelength of blue light is 1.7 times smaller than
the red light. So, the intensity of scattered blue light is 8 to 9 times more than the intensity of
scattered red light. Thus, intense scattered-blue light is responsible for the sky to be bluish.

Another consequence of Rayleigh seattering is the appearance of reddish colour of the sun either
at the sunrise or at the sunset

As shown in figure 6.26, at the sunrise or sunset,

. . . Sunlight

light from the sun has to travel relatively more distance to q,\\’@ Durirglg

reach the observer on the earth as compared to the noon- > Aft
ernoon

time. During the passage of light in the atmospheric light
of smaller wavelengths scatter more. Hence, only light
with high wavelengths (i.e., reddish or yellowish-red) can i:}
reach to the observer substantially. Thus, the sun appears
reddish. However, if we see vertically upward, sky ap- Red Light [
pears blue. This effect is maximum in the direction Reaching to |
perpendicular to the incident light. The same is the reason Earth Surface
for reddish full-moon while rising or setting.

\_Atmosphere

It is found that the intensity of the Rayleigh scattered ——
hght. 1ncrt;ases rap1d1§.f as the ratlo. o 1.ncr.ease.s. Fl.lrther, Figure 626 Seattering of Sun Light
the intensity of Rayleigh scattered light is identical in the Due to Atmosphere

forward and reverse directions.

6.15.2 Mie-Scattering : If the size of scatterer particles are slightly larger than the wave
length of the light, scattering is known as Mie-scattering. It was studied by Gustav Mie in 1908. It
is found that as the size of the particle increases, the proportion of diffused scattering also increases.
Since water droplets in the cloud have size comparable to wavelength of light, scattering of sun light
through clouds is diffused scattering. It is independent of incident wavelengths. Hence, all colours
scatter equally, and the clouds appear white. Unlike Rayleigh scattering, Mie-scattering is observed
in larger amount in the forward direction than in the reverse direction. Also, as the particle size
increases, more amount of the light is scattered in the forward direction.
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For information only : The Mie-scattering shows that if the size of the particle lies between
two wavelengths of light, then the light having more wavelength is scattered more than the light
with smaller wavelength. If dust clouds have such size then the rising sun and moon or setting
sun and moon would be seen blue or greeen !

However, such a situation rarely occurs. In the 19th century when the Volcano Krakotoa in
Indonesia erupted and in 1950 when there were extensive forest fires in East-Canada and North-
East USA, such situation took place.

If earth had no atmosphere, the sky would have been blackish, and stars would have been
visible even during day time ! This becomes reality at or above 20 km from the earth surface.

In presense of high pollution in the atmosphere, the sky appears greyish and hazy instead
of blue.

6.15.3 Raman-Scattering : The Raman effect was first reported by Indian Nobel laureate C.
V. Raman. This inelastic scattering of light was also predicted by Adolf Smekal in 1923. Hence, this
effect is also known as Smekal-Raman effect.

When a strong beam of visible or ultraviolet light is incident on gas, liquid or transparent solid,
a small fraction of light is scattered in all directions. It is found that the scattered light spectrum is
made up of lines of incident wavelength (Rayleigh lines) and weak additional lines of changed wave
lenghts. These additional lines due to inealstic scattering are called Raman lines. Raman lines are
found symmetrically on both sides of the central Rayleigh lines. Raman lines with low frequencies
(or higher wavelengths) are known as Stokes lines, and the one on higher frequency (or low
wavelength) sides are known as Antistokes lines.

Raman lines are the characteristics of the material.

Raman scattering is the most versatile technique to study characteristics of the material, different
excitations in the materials, in optical amplifiers, to study biological organisms and human tissues, etc.

6.16 Optical Instruments : The purpose of most optical instruments is to enable us to see the
object better. They are made up of combination of refracting and/or reflecting devices such as lenses,
mirrors and prisms. They can be divided into two groups : instruments forming real images (e.g.,
projectors) and instruments forming imaginary images (e.g., microscopes and telescopes).

We first study simple microscope.

6.16.1 Simple Microscope : Suppose we want to see a microscopic object clearly and
magnified.

The least distance at which a small object can be seen clearly with comfort is known as near
point (D) or distance of most distinct vision. For normal eye this distance is 25 cm.

Suppose a linear object with height &, is kept at near point (i.e., ¥ = D = 25 cm) from eye.
Let it subtend an angle 90 with the eye (See figure 6.27 (a)).

hj -u-_‘h:;_i!‘“'w-,__ _ hi]‘ thfi:t[\

Object Eve Object \] R -
Yy Image 1
[ o= Eye
‘ b 7 - D >

(a) (b)
Figure 6.27 Simple Magnifier
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Now, if object is kept within the focal length (f) of a convex lens such that its virtual, erect
and magnified image is formed at a distance equal to the near point. Since the lens is very close
to eye, angle (0) subtended by the object with lens and eye are almost identical.

The angular magnification is defined as

' tan 6
m' = oy =, (for small © and 6,) (6.16.1)
Also, from figures 6.27 (a) and (b),
h
~ )
taneo = 90 = 3
0=~6, =1
and tan® = O = D
' hi
.mo= h_o (6.16.2)
But for convex lens, linear magnification,
lm | = o
Ilmi=2 (6.16.3)
Using Gauss’ formula,
1 1 1 .. . .
—m + D) = 7F (for this image v = D is negative)
1 _ 1L 1 _ D+r
= F TD T Dy
Df

U= Pig (6.16.4)
Using (6.16.3) in equation (6.16.4),
Imi=1+7 (6.16.5)
When the image is at a very large distance
| m | = ? (6.16.6)

Combinedly equations (6.16.5) and (6.16.6) suggest that the value of m should be between %

e

6.16.2 Compound Microscope : We have seen that in a simple microscope magnifying power

D . . .
depends on 7 Thus, we tempted to use a convex lens with small focal length in order to improve

magnification. It is found, however, that by reducing the value of focal length, image becomes
distorted. Thus, very large and clear image is not possible with a simple microscope. But if magnified
image due to one simple microscope is used as an object for another simple microscope, then we
get very enlarged image. This is the basic principle of a compound microscope.
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The lens kept near the object is known

Eye-piece 45 gbjective, while the one nearer to eye is

ol | -pi i
q—u_..|..j§..fp 1 f | known as eye-piece. Distance between the

second focal point (P) of the objective and

the first focal point (Q) of the eye-piece is

: | [ PP Q B known as tube-length (I.) of the microscope.
<

It is clear from the figure that the image

obtained by the objective is real, inverted and
magnified. This image acts as an object for
the eye-piece. Eye-piece works as a simple
microscope and gives a virtual and highly

magnified final image (A''B'").

The image due to objective is observed
close to the focal point of an eye-piece. Due
to this reason final image is formed at a

Figure 6.28 Compound Microscope

considerable large distance.
Magnification : Magnification due to the objective,

m, = - (6.16.7)

From AXYP and APA'B', respectively,

h

XY 0

tanfl = % = A = h, = f, - tanf
AB' h; '
and tanf} = PR = ﬁ (+ Q and B' are very close to each other)
"~ h = PQtanf} = L-tanf3
L

omy = To (6.16.8)

Magnification due to eye-piece,

m = (%Hj (See Equation (6.16.5) (6.16.9)
e

Resultant magnification of a compound microscope is (Equation (6.12.10)),

m = my X m,

L D
=7 x (fe+1] (6.16.10)

In practice, eye-piece is so adjusted that image A'B' falls very close to its focus Q. Thus, image
obtained by eye-piece will be at very large distance (D). Thus, above equation can be written as,

L D
m= X f, (6.16.11)
In order to have large magnification, tube length (L) of the microscope should be kept large.
Ilustration 16 : An object is 10 mm from the objective of a compound microscope. The lenses
are 30 cm apart and the intermediate image is 50 mm from the eyepiece. What overall magnification
is produced by the instrument ?
Solution : From the figure 6.28, applying Gauss’s formula to the objective,
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= t+ 5 = - 1
Tty =T (1)

where v = image distance due to objective lens = f, + L (as Q and B' are very close to each
other).

Since image due to objective is formed at 50 mm from the eye-piece, and distance between two
lenses is 30 cm = 300 mm (given), image distance from objective

v =300 — 50 = 250 mm

From equation (1),

-1 1 1 . . .
o + 350 = T (using sign convention)

'.foz(g%_ﬁg) = 9.62 mm = 10 mm

Since v = f) + L = L = 250 — 10 = 240 mm

Final image is always close to the object,

D = (object distance for objective) + (distance between two lenses)
= 10 + 300 = 310 mm

For eye-piece, Gauss’ equation,

1 1 1
- + 5 = —
u Vv fg
1=, L (For virtual image, v = —D)
7, ~ =50 T 310 &%
2310450
— (50x310)

o 1f, 1 =596 = 60 mm
thus, resultant magnification is

L D _ 20 , 310

m= T X 7= X g - 124

Note : Since the final image obtained at a distance 31 cm from the eye-piece is greater than
the near-point distance, it can be seen comfortably.

6.16.3 Astronomical Telescope : After observing minute objects using a microscope, now it’s
time to observe very huge celestial bodies which are crores of kilometers away. Such bodies, in spite
of being huge and very far from each other, they are seen to be small and very close to each other
by our naked eyes (for example, stars). For observing such objects an Astronomical Telescope is

used. It’s ray diagram is shown in figure 6.29. )
) Rays coming
In this telescope two convex lenses are kept from distance 7, rfe—f—s

in such a way that their principal axis coincide. --..
The lens facing the object is called objective and
the lens near the eye is known as eye-piece.

Here, the diameter and the focal length of the
objective are greater than that of the eye-piece.

The eye-piece can move to and fro in the
telescope-tube. When the telescope is focussed
on a distant object, parallel rays coming from this
object form a real, inverted, and small image
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A B, on the second principal focus of the objective. This image is the object for the eye-piece. Eye-
piece is moved to and fro to get the final and magnified inverted image A B, of the original object
at a certain distance.

We obtain the expression for the magnifying power of a telescope, as follows.

Magnification of the telescope,

_ Angle subtended by the final image with eye _
m = Angle subtended by the object with the objective or eye

Q™

From figure 6.29

Magnification, m = %
_ AB % 0
fe AB,

Lk

R 7,

This equation shows that to increase the magnification of the telescope, focal length of the

objective should be increased, and focal length of the eye-piece should be reduced. f, + fe is the
optical length of the telescope. So, length of the tube L > f + f.

If the focal length of the eye-piece is 1 cm and the focal length of the objective is 200 cm,
magnification of the telescope would be 200. Using such a telescope, if the stars having angular

distance 1' are observed, they would be seen at 200 X 1' = 200" = 3.33° angular distance from
each other.

For a telescope, light gathering power and resolving power (power to view two nearby
objects distinctly) are very important.

Amount of light entering the objective of the telescope is directly proportional to the square of
the diameter of the objective. Also, with increase in the diameter of the objective, resolving power
also increases.

Image formed in this type of telescope is inverted. So if we see from the Earth we get an
inverted view of the real scene. To get rid of this problem, an extra pair of inverting lenses in the
terrestrial telescope are kept, so that the erect image of the distant object is obtained. Such a
telescope is called a terrestrial telescope. However, Galileo had used a convex lens and a concave
lens in such a telescope.

To get rid of the practical problem faced in obtaining high resolution and high magnification in
refracting telescopes, mirrors are used in modern telescopes. Such a telescope is known as reflecting
telescope. In such a telescope we can get rid of other problems like chromatic aberration and also
spherical aberration, if a parabolic mirror is used.

(In chromatic aberration the edge of the image is seen multicoloured due to dispersion of light
and in spherical aberration, image of a point like object is seen spread out).

Construction of the telescope made by Cassegrain (reflecting telescope) is shown in figure 6.30.
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As shown in the figure, parallel rays coming

from a distant object are incident on the reflecting

surface of the primary concave mirror. The
reflecting surface of the mirror is parabolic. The
rays after getting reflected from this surface are

focussed on the principal focus (F) of this mirror.

(If the eye-piece is kept near F the image can
be seen. But as F is inside the tube, it is difficult

to place the eye-piece there.) Cassegrain placed

Figure 6.30 Reflecting Telescope

a convex mirror. Rays reflected by the secondary

mirror are focussed on the eye-piece after passing through the hole kept in the primary mirror.
Diameter and focal length of the primary mirror are kept large in such telescope.

Binoculars used for bird watching or for viewing a cricket match are double telescopes. Here,
the final image is erect. In the binoculars use of prisms reduces the size of the binoculars.
Binoculars are so named because in them viewing is possible by both eyes.

6.16.4 Human Eye :
figure 6.31.

The ray entering the eye is first refracted in the cornea, yet the eye lens is the main factor
“culprit” in this case. Due to this lens, inverted and real image is formed on the ratina. This image
is processed in the human brain and as a final effect, we feel the image be erect.

Human eye is the best example of a natural optical appliance. See

Retina has two types of cells :
(1) Rods :
(2) Cones :

These cells give the sensations of less intensity of light.
These cells give the sensations of colour and high intensity of light.

In case of eye, distance between the  Ciliary Muscles

retina and the lens is fixed. That is why

focal length of the eye lens changes in

such a way that the images of the object
are always obtained on the retina. (Really,
eye lens is smart lens). This becomes
possible due to the ciliary muscles attached

to the lens. It makes the lens thick or thin

Iris e
Pupk

} Retina

Cornea —L'
' '-"’ ——Optic Nerve
Crystalline b
Lens \
Figure 6.31 Human Eye (For Information Only)

as per requirement.
The Iris controls the amount of light entering the eye. It does the work by controlling the size
of the pupil. When we see the object kept on the side, lens of the eye rotates and brings the image
on the central region of the retina, (fovea).
Defects of Vision : If the lens of eye cannot become thin as per requirement and remains thick
only, then rays coming from far objects, which are parallel, undergo extra refraction as shown in
figure 6.32, and get focussed in front of the retina. And therefore far off objects cannot be seen

clearly. But the image of nearby objects is formed on the retina (figure 6.33). This type of defect

is called Near sightedness (myopia).
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Figure 6.32 Image of Distance Object Falls Figure 6.33 Image of Nearby Object Falls

in front of Retina on the Retina

This defect can be corrected by using concave lens of proper focal length (figure 6.34).

&

Figure 6.34 To Correct this Defect, Concave Lenses are Used

If the lens remains thin, does not become thick as per requirement, rays coming from a nearby
object suffer less refraction and are focussed behind the retina. (figure 6.35). Such an image is not
clear. Image of a distant object is formed on the retina only and can be seen clearly, but nearby
objects cannot be seen clearly. This defect is called far sightedness (hypermetropia). This type
of defect is due to less convergence of rays. To correct this defect a convex lens of proper focal

length is used (figure 6.36).

Figure 6.35 Hypermetropia Figure 6.36 Convex Lens Between

Object and Eye

Some people, if shown a wire gauge cannot see the vertical and horizontal both wires clearly,
but any one is seen clearly. This defect is called astigmatism. If the curvature of the lens and the
corena are not the same, this defect occurs. E.g., if a person can see horizontal wires but not
vertical. Here, horizontal curvatures are same but vertical curvatures are not. So rays are refracted
equally in the horizontal plane, but refraction in the vertical plane is not equal. As a result horizontal
wires are seen clearly and vertical wires are not seen clearly. To get rid of this defect, cylindrical
lens is used. In the above mentioned case a cylindrical lens of proper curvature and horizontal axis

can be used to rectify the defect.
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10.

11.

12.

14.
15.

16.

SUMMARY

—_

2
R

v = image distance, R = radius of curvature and f = focal length.

. . . 1 . .
For mirrors Gauss’ equation is lu + 5 = = 7 where u = object distance,

[

Lateral magnification for mirrors is given by m = Z— = - %

For a compound slab of different transparent media, general form of Snell’s law is written as,
nsing, = nsinb, = n,sinb, = ...

Total internal reflection is used as reflectors, e.g. flint glass-prism may be used as high quality
reflector. For glass—air interface, critical angle (C) is given by,

. 1] . .
C = sin l(ﬁ), where n = refractive index of glass.

Total internal reflection phenomenon is also used in optical fibres.

For thin lens : _71 + % = (nznlnlj.(%l—l%zj and % — _71 + %

Since the principle of reversibility suggests that the object and image are conjugate to each
other, interchanging the positions of an object, image distance can be determined.

Power of lenses in contact is given by

P=P + P + ...

Magnification of lenses in contact is given by

m=m X m, . ...

Focal length of lenses in contact is given by

11
7= fl + £ ot o

Prism equation is given by O = i+e—A. At minimum angle of deviation,
0 = 2i — A. For thin prisms, (A < <), 5m = A (n — 1), where n = refractive index of

the material of prism.

Scattering can be classified into two : elastic scattering (Rayleigh and Mie-Scattering) and
inealstic scattering (e.g., Raman Scattering). If the size of the particle scattering light is smaller
than the wavelength of the incident light, it is known as the Rayleigh scattering, if otherwise,
it is known as the Mie-scattering.

Compound microscope can be thought of as made up of two cascaded simple microscopes,
in which magnified image due to first simple microscope works as an object for the second.
For high resolution and magnification, curved mirrors are used in modern telescopes.

Retina has two types of cells : rods give the sensations of less intense light and cones give
sensations of colour and high intense light

Defects of vision can be overcome by proper lenses.

EXERCISES

For the following statements choose the correct option from the given options

1.

An object is placed at a distance of 25 cm on the axis of a concave mirror, having focal
length 20 cm. Find the lateral magnification of an image.

(A) 2 (B) 4 C) —4 (D) =2

A fish in a lake is at a 6.3 m horizontal distance from the edge of the lake. If it is just
able to see a tree on the edge of the lake, its depth in the lake is ........... m. Refractive
index of the water is 1.33.

(A) 6.30 (B) 5.52 (©) 7.5 (D) 1.55
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3. For a thin convex lens when the heights of the object is double than its image, its object
distance is equal to .......... focal length of a lens is f.
A f B) 2f © 3f (D) 4f

4. A liquid of refractive index 7 is filled in a tank. A plane mirror is kept at the bottom of the
tank. A point like object (P) is kept at a height h from the mirror on the liquid surface. An
observer observes the object and its image in the vertically downward direction from top. How
much distance will observer note between P and its image ?

() 2nh ®) 2 © 7 () hi+]
5. Depth of a well is 5.5 m and refractive index of water is 1.33. If viewed from the bottom,
by how much height would the bottom of the well appear to be shifted up ?
(A) 55 m B) 275 m (©) 413 m (D) 137 m
6. A ray of light is travelling from a denser medium to rarer medium. For these media, the
critical angle is C. The maximum possible deviation of the ray is ......... .
L]

]
¥

:.r\Deviation A) T — 2 B) ® - 2c

Rarer 0

fa e o o

(C) 2C (D) % + C

o/ Source Denser [Hint : The situation at total reflection is shown in the figure.]

7. A point object O is placed midway between on the common axis of two concave mirrors of
equal focal length. If the final image is formed at the position of the object, the separation
between two mirrors is .......... . Focal length of mirrors is f.

A) f B) 2f

Y

i

3 1
©) 5f D) 3f.
Axis [Hint : A situation is depicted in the figure.]
[Note : Another possible situation for which
> - : object and its image coincide is when distance

between two mirrors is 4f.]

8. The focal length of a thin lens made from the material of refractive index 1.5 is 20 cm. When
it is placed in a liquid of refractive index 1.33, its focal length will be .......... cm.
(A) 80.81 (B) 45.48 (C) 60.25 (D) 78.23

9. A tank contains water upto a height of 30 cm and above it an oil up to another 30 cm height.
......... cm shifts in the position of bottom of the tank is observed when viewed from the
above. Refractive indices of water and oil are 1.33 and 1.28, respectively.
(A) 744 (B) 6.46 (©) 14.02 (D) 6.95

[Hint : From Z— =

n
R A (n_;_l] (Shift, Ah is negative because shift, Ah = h—h")

L shift, Ah = hox |15 | = nox [1=52 |
2

oy
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10.

11.

12.

13.

14.

15.

16.

17.

For a thin plano convex glass lens with radius of curvature 20 cm, focal length is .......... cm.
Refractive index (n) of the material of the lens is 1.5 and it is kept in air

(A) 20 (B) 40 (C) 60 (D) 80

[Hint : For air — glass lens, _71 + % = % = %]

For right-angled prism, ray-1 is the incident ray and ray-2 is the emergent ray, as shown in
the figure. Refractive index of the prism is .......... .
b

W ®) L .
© 7 (D) |3 o

A ray of light is incident normally on the surface of an equileteral prism made up of material
with refractive index 1.5. The angle of deviation is .......... .
(A) 30° (B) 45° (C) 60° (D) 75°

[Hint : For the present case use the formula sinC = % to understand the phenomenon.]

A ray is incident at an angle i on the surface of a prism with very small prism angle A, and
emerges normally from the opposite surface. If the refractive index of the prism is [l the angle
of incidence i is nearly equal to .......... .

A B) L
© % (D) pa

[Hint : Use the given figure.]

A small linear object of length b is placed on the axis of a concave mirror. The end of the
object facing the mirror is at a distance u# from the mirror. If f is the focal length of a mirror,
the length of the object will be .......... approximately.

2 _ 2
(A) b(”ff) (B) b(uff) (©) (%) (D) b[uff)

[Hint : Neglect b whenever necessary.]
A horizontal ray is incident on a right-angled prism with prism angle of 4°. If the refractive

index of material of the prism is 1.5, angle of emergence is .......... . Use the given figure.
A
(A) 4° (B) 6°
40
i
Air n, =1 7\ T
(D) 10° (D) 0° ! =
Which of the following is responsible for glittering of a diamond ? B C
(A) Interference (B) Diffraction (C) Total internal reflection (D) Refraction
The radii of curvature of both the sides of a convex lens are 15 cm and if the refractive index
of the material of the lens is 1.5, then focal length of lens in air is ......... cm
(A) 10 B) 15 (©) 20 (D) 30
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18.

19.

20.

21.

22.

24.

25.

An image of an object obtained by a convex mirror is 7 times smaller than the object. If the
focal length of lens is f, the object distance would be .......... .

(A) % (B) (njil) ©) (n — Df D) nf

Time taken by the sunlight to pass through a slab of thickness 4 mm and refractive index 1.5
IS v sec.

(A) 2 x 1078 (B) 2 x 108 (C) 2 x 107" (D) 2 x 10"

An air bubble in a glass slab with refractive index 1.5 is 5 cm deep when viewed from one
face and 2 cm deep when viewed from the opposite face. The thickness of the slab is
.......... cm.

I (A) 10.5 B) 7

-Slab
Sem (C) 105 (D) 70

bl S h _ N
Q_’.’um [Hint : Use n= ”1]

The focal length of an equiconvex lens in air is equal to either of its radii of curvature. The
refractive index of the material of the lens is .......... .

(A) % B) 1.5 ©) 25 (D) 0.8

A ray of light experiences minimum deviation by an equilateral prism P. Now two prisms Q
and R made of the same material as that of P are arranged as shown in the figure. The ray
of light will now experience, (The dimensions of P, Q and R are same.) ..........

(A) larger deviation
(B) no deviation
(C) same deviation as that due to P

(D) total internal reflection

The refractive indices of four media, as shown in the figure, are n, n, n, and n,. AB is
an incident ray. DE, the emergent ray, is parallel to the incident ray AB, then .......... .

@ @ € &)

n i Ny L A) n,=n, B) n,=n

T b © n,=n D) n, = n

A 4

3

1

If the tube length of astronomical telescope is 105 cm and magnifying power is 20 for normal
setting, then the focal length of the objective is .......... cm.

(A) 10 (B) 20 (©) 25 (D) 100

[Hint : Optical length of astronomical telescope is given by L 2 f + f]

The top sky looks blue in morning hours because, .......... .

(A) red light is absorbed (B) blue light is scattered the most

(C) sun radiates blue light only in the morning.

(D) blue light is absorbed by the sky
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26.

27.

28.

29.

30.

31.

A defect of vision in which lines in one plane of an object appear in focus while those in
another plane are out of focus is called .......... .

(A) astigmatism (B) distortion (C) myopia (D) hypermetropia

Stokes and antistokes lines observed in Raman scattering is due to .......... of light.

(A) reflection (B) elastic scattering

(C) inelastic scattering (D) dispersion

A convex lens of focal length 10 cm is used as a simple microscope. When image of an
object is obtained at infinite, magnification is .......... Near point for normal vision is 25 cm.
A 1.0 (B) 2.5 (©) 04 (D) 25

As shown in the figure, thin prisms P and P, are combined to produce dispersion without
deviation. For prism P, angle of prism is 4° and refractive index is 1.54. For prism P, angle
of prism is 3° Refractive index of material of P, is ......... .

(A) 1.72 B) 1.5 E '
(C) 2.4 (D) 0.58 . ’
7

[Hint : For thin prism, 6 = A(n — 1)]
A spherical convex surface separates an object and image spaces of refractive index
1.0 and 1.5 respectively. If radius of curvature of the surface is 25 cm, its power is

(A) 13 (B) 33 (©) 33 D) 1.3

| nh o o_ _ 1
[Hmt.u + = = andP—f]

A light ray is incident at an angle 30° with normal on a 3 cm thick plane slab of refractive
index n = 2.0. The lateral shift of the incident ray is .......... cm.
(A) 0.835 (B) 8.35 ©) 15 (D) 1.197

tsin(6, —6,)

[Hint : Since incident angle 61 is not small, lateral shift, x = cos 0,

ANSWERS

1. (C) 2. (B) 3. (C) 4. (B) 5. (D) 6. (B)
7.(B) 8 (D) 9. (C) 10. (B) 1. (D) 12. (C)
13. (D) 14. (D) 15. (B) 16. (C) 17. (B) 18. (C)
19. (C) 20. (A) 21. (B) 22. (C) 23. (D) 24. (D)
25. (B) 26. (A) 27. (C) 28. (B) 29. (A) 30. (D)
31. (A)

Answer the following questions in brief :

1.

2.
3.
4

5.

What are paraxial rays ?

State Snell’s Law.

What is total internal reflection ?

Light is incident normally on a glass slab with refractive index of 1.67. Find percentage
reflected intenstity (I) compared to the incident intensity.

What is the use of cladding in the case of optical fibers ?
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9.
10.
11.

Define optical centre of a lens.

Write one advantage of using Newton’s formula over lens-maker’s formula.

Initially, two thin lenses were kept in contact. Now, if they are separated by d distance, what
happens to the focal length of a combination ?

What are conjugate foci ?

Define near point or distance of most distinct vision.

What is the function of rods in retina ?

Answer the following questions

1.
2.
3.

S B

10.

11.
12.
13.
14.
15.

16.

17.
18.

19.
20.
21.
22.
23.
24.
25.

Obtain relation between focal length and raidus of curvature for convex mirror.
For concave mirror, derive the mirror formula.
Define lateral magnification for mirrors. Using cartesian sign convention, derive its relation with
image distance and object distance.
Obtain an expression for lateral shift due to rectangular slab.
Explain the relation between real depth and the virtual depth.
Explain total internal reflection.
How right-angled prisms are useful as perfact reflecting surface ?
Explain how total internal reflection is useful in optical fibre.
—m ny _ (mp-n)

For a spherically curved surface, derive the relation, - + v = R

. . . . . — Ty L1
Explain the image formation due to thin lens and derive 7] + % = (—) (R—I_R—zj

relation.

Derive lens-maker’s formula for thin lens.

Derive Newton’s formula for thin lens.

Explain conjugate points and conjugate distances.

Define lateral magnification for lenses. Obtain its relation to extra focal distances.

Derive the relation for effective focal length of an optical system made up of two thin lenses
in contact.

Obtain the relation f = %(V — d) for a convex mirror using a combination of convex mirror

and convex lens.

Derive an equation & = i + ¢ — A for equilateral prism.

Using & = i + e — A for equilateral prism obtain an equation for refractive index (n) of
material of the prism.

Write note on Rayleigh scattering.

What is scattering ? Explian Raman Scattering.

Obtain an expression for magnification for simple microscope.

With diagram, derive an expression for magnification for compound microscope.

Write note on refracting telescopes.

What are reflecting telescopes ? What are the advantages of them over refracting telescopes ?

Discuss astigmatism defect of human eye.
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Solve the following examples
1. An object moves with uniform velocity (v)) on the axis of a concave mirror. If it moves
towards the mirror, show that when it is at a distance u# from the mirror. The velocity of its

2
image is given by v, = (ZuL—R) Vv, Where R is radius of curvature of the mirror.
2. An image of a linear object due to a convex mirror is %th of the length of the object. If focal

length of the mirror is 10 cm, find the distance between the object and the image. The linear

object is kept perpendicular to the axis of the mirror. [Ans : 37.5 cm]
{.

3. A concave mirror has been so placed on a table that its ,

axis remains vertical. P and C are pole and centre of
curvature respectively. When a point like object is placed L 2

at C, its real image is formed at C. If now, water is filled \_//

in mirror. What can be said about the position of the image? ) . P
[Ans : image is between ¢ and p]

4. The diameter of the sun subtends an angle of 0.5° at the pole of the concave mirror. The
radius of curvature of the mirror is 1.5 m. Find the diameter of the image of the sun. Consider
the distance of sun from the mirror infinite. [Ans : 0.654 cm]

5. A ray, as shown in the figure, is incident at the angle v

of incidence 30° on the surface and travels in
the medium. If the refractive index of the medium

is given by n(y) = 1.5 — ky. Here, k is constant )
Medium

and it is equal to 0.25m7!. At which value of y,
>3
will the ray becomes horizontal in the medium ? /C Air
T

Here, y is in meter. [Ans : y = 3 m]

6. A narrow beam of light is incident on a glass plate of refractive index 1.6. It makes an angle
53° with normal to the interface. Find the lateral shift of the beam at the point of emergence,

if thickness of the plate is 20 mm. Take sin53° = 0.8. [Ans : 9 mm]
7. A real image obtained by a concave mirror is 4 times begger than the object. If the object
is displaced by 3 cm away from the mirror, the image size becomes 3 times the object size.
Find the focal length of the mirror. [Ans : 36 cm]

8. The refractive index of material of a particular optical fibre is 1.75. At what maximum angle
a ray can be made incident on it, so that it is totally internally reflected ? Consider air as an

external medium with refractive index as 1.0. [Ans : %]
9. A level measuring post (a rod) has been kept in ;un
3 ays

a river of 2 m depth vertically such that its 1 m 0’
portion remains outside the river. At this instant,
the sun makes an angle of 30° with the horizontal.
Find the length of the shadow of the level
measuring post on the bottom of the river (see

.
L

=
7
o
~
=
El

4
3
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10.

11.

12.

13.

14.

15.

A vessel is fully filled with liquid having refractive index % At the bottom of the vessel a

point-like source of light is kept. An observer looks at the source of light from the top. Now,
an opaque circular disc is kept on the surface of the water in such a way that its centre just
rests above the light source. Now liquid is taken out from the bottom gradually. Calculate the
maximum height of the liquid to be kept so that light source cannot be seen from outside.
Radius of the disc is 1 cm. [Ans : 1.33 cm]
As shown in the figure, two concave refracting surfaces of equal radii of curvature (R) and
refractive indices (n = 1.5) face each other in air (n = 1.0).

A point object (0) is placed midway in between

[ - 7 Air \ . / the centre and one of the vertices of the
e C O i refracting surfaces. Find the distance between

R
Q" I‘_j \ image O' formed by one surface and image

O'' formed by the other surface in terms of
R.

int : UL -
[Hint : Use ” + > (n,

- nl)% for both the refracting surfaces.] [Ans : 0.114 R]

() If f =+ 0.5m calculate power of a lens.

(2) The radii of curvature of a convex lens are 10 cm and 15 cm. If its focal length
is 12 cm, find the refractive index of the material of the lens.

(3) The focal length of a convex lens in air is 20 cm. What will be its focal length in
water. The refractive index of water is 1.33 and that of glass is 1.5.

[Ans : (1)+2 D (2) 1.5 (3) 78.2 cm]

One end of a cylindrical rod made from the material of refractive index 1.42 is hemispherical.

A narrow beam of parallel rays is incident as

_._/— ‘“1,' ny=1.42 shown in the figure. At how much distance will this
—'—Q—‘i _,-"; } beam of ray be focussed from the hemispherical
Air n=10 ) surface ? [Ans : 3.38 R]

The plane surface of a plano convex lens of focal length 20 cm is silvered and made

Incident Ra :
> - ESIIV“ed reflecting, as shown in the figure. Find new
__,_-I—'""'}_I hh*“'f' focal length of the system.
[Ans : 10 cm]
M 12
Consider a general case of thin lens with first principal focal length (f)) and second principal
O focal length (f)). Obtain the expression for magni-
B Ry iy} R,
A 2 fication i f f and L Arso, 1
. Lo ' ication in terms of f, and f, as 7o) so, for

. — — 2
a special case of f, = f = f deduce Gauss
equation from the expression for the magnification.
Use cartesian sign convention.

[Hint : From figure ABH H, and AF OH, are similar, and AB'H2H2 and AF,0OH, are
similar.]

f
S i —

=+ V.

o~}
B S s >
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7

7.1 Introduction

DuaL. NATURE OF RADIATION AND MATTER

At the end of the nineteenth century, most physicists thought that the Newtonian laws governing
the motion of material particles, thermodynamics and Maxwell’s theory for electromagnetic waves are
complete and fundamental laws of physics. They all together constitute “Classical Mechanics”.
Classical physics deals primarily with macroscopic phenomena. Most of the effects with which
classical theory is concerned are either directly observable or can be made observable with relatively
simple instruments. Thus, there is a close link between the world of classical physics and our sense
of perception. Almost all known macroscopic problems were satisfactorily solved applying the laws
of classical mechanics, and therefore scientists have turned their concentration to the study of atomic
and subatomic (i.e. microscopic and submicroscopic) systems. Unlike macroscopic system, since these
systems are inaccessible to direct observations, the experiments which have generated interest and
curiosity studying some microscopic problems are worth mentioning here.

Study of the influence of an electric field to cathode rays by Jean Perin (1895), and experimental
demonstration of negatively charged particles have discovered an electron. Just later, J. J. Thomson

found the ratio of charge to mass (% = 1.756 x 10'! C/kg) for an electron, while Milikan (1909)

had estimated the charge of an electron (¢ = 1.602 X 107! C). It was also established that the
smallest basic unit of matter is an atom, and it is electrically neutral. Wilhem Rontgen (1885)
accidentally discovered X-rays and just few years later, Henry Bacquerel (1896) and Madam Curie
(1898) with different compounds have discovered radio activity.

These were the few experiments which provided a foundation to perform series of different
experiments yielding results which could not be explained by the laws of classical mechanics. The
specific heats of solids and diatomic gases at very low temperatures, large electrical conductivities
of metallic solids, structure of an atom and the characteristic wave lengths emitted or absorbed by
different elements, the photoelectric effect, the study of black-body radiation were the notable
problems which could not be understood in terms of classical mechanics.

For the resolution of the apparent paradoxes posed by these observations and certain other
experimental facts, it became necessary to introduce new ideas quite foreign to commonsense
concepts regarding the nature of matter and radiation.

Historically to understand how entirely new concepts were emerged, we study the difficulties in
explaining the black-body radiation.
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+ Black-body Radiation : In 1897, Lummer and
Pringsheim measured the intensities of different wavelengths

2 (i.e., intensity distribution) of black-body or cavity radiations,
g [ which is plotted in the figure 7.1.
g
g i Scientists were trying to explain these graphs using
= the laws of electromagnetic theory and thermodynamics.
7 . L
L ) \ On the thermodynamic grounds and by using ideas of
~ i electromagnetism, Wien gave an expression for energy
L] 1O 1] A0 L - 1 b
Wavelength (nm) density as, u, = F-exp (—ﬁ); where b is cosnstant and

Figure 7.1 Relative Intensity as a T is absolute temperature. Such an equation can explain
Function of Wavelength the experimental reuluts only for small wave lengths, but

fails to explain the higher wavelengths intensity distribution.

Rayleigh and Jeans determined the number of normal modes of vibration for small intervals of
wavelengths, considering the radiations as electromagnetic waves. Each normal mode corresponds to

one harmonic oscillator. As the degrees of freedom for harmonic oscillator is two, according to
equipartition law for energy, its kinetic energy is k,T. Here, k is the Boltzmann constant. Based
on this argument, they derived an equation for energy density as,
8m kT

X

u, = (7.1.1)

This equation can explain the energy distribution for large wavelengths only. Further, the total
energy density (u, ) covering all possible wavelengths must follow the Stefan-Boltzmann’s law

(u, = T where 0 = Stefan-Boltzmann’s constant). But using equation (7.1.1), if we calculate

tot

h 1 density. i _ P8mhkgT
the total energy density, ie., u, = ('; 3

d\, we get infinite (oo) answer ! This is called ultraviolet

catastrophe. On the other hand, Wien’s law requires (A ). T = constant, (b)is called wien’s constant.
(7.1.2.)

Here, 7Lmax is the wavelength corresponding to the peak value in the intensity distribution graph
at that temperature.

Thus, all the attempts based on thermodynamics and electromagnetic theories failed to explain the
entire energy distribution curves of black-body radiation.

7.2 Planck’s Hypothesis for Radiation

The explanation of energy distribution curves of black-body or cavity radiation was given by Max
Planck (1900) at the Academy of Science in Berlin.

He suggested — “The walls of cavity emitting radiations are made of electric dipoles.
According to their temperature, different dipoles oscillate with different frequencies and
emit radiations of frequencies equal to frequencies of their oscillations.”

Now, according to the classical physics an oscillator may possess any amount of energy. That
is, an oscillator may acquire continuously varying (from zero to maximum available) energy.

Planck presented a revolutionary idea that ‘“‘these microscopic oscillators may mnot possess
any arbitrary energy as allowed by the laws of classical mechanics. If the vibrational

frequency of such a microscopic oscillator is f, then it may possess energy given by,

2 [0 —



E, = nhf, (7.2.1)

where n = 1, 2, 3 ... Here h is known as Planck’s universal constant. Thus, according to
Planck, energy of such microscopic oscillator depends on its vibrational frequency. This is in contrast
to classical oscillator, whose energy depends on its amplitude of oscillation, as per the well known

equation %kAZ. Here, k is the force constant and A is amplitude.
Equation (7.2.1) also suggests that the energy of an oscillator of frequency f is hf, 2hf, 3hf,

..., etc. It cannot possess the fractional energy like O.1A4f, %hf, 0.06Af. Thus, energy of

microscopic oscillator is an integral multiple of Af. In other words, the smallest quantum of
energy of an oscillator of frequency f is ‘hf.

This smallest bundle or packet or quantum of energy is known as photon. When an oscillator
emits radiation of frequency f, its energy decreases in integral multiple of Af. And quanta of energy
hf are emitted. That is, energy is not emitted continuously but in the form of quanta. This
phenomenon is known as the quantization of energy. (You have also studied the quantization of
electric charge.) If an oscillator possesses energy 5hf, meaning 5 quanta each with energy Af.

Based on his hypothesis Planck could successfully derive the equation of spectral emissive power
for a perfect black-body radiation, which is given by

2nf? h o
Wf. = TCU; X{ ( hff] . Here, ¢ = speed of light in vacuum, T = absolute temperature of a
e —1}

kT

perfect balck body, k, = Boltzmann’s constant. (This equation is only for information.)

Above equation gives maximum energy density at the wavelength (kmax) corresponding to Wien’s
law. Using the experimental values of Stefan-Boltzmann constant ¢, Wien’s constant b (see equation
(7.1.2.)) and Boltzmann’s constant kB, value of Planck’s constant (h) can be determined as

h = 6.625 x 107 Js

It can be proved that in the limit Af — 0, above equation correctly reproduces the classical
value kT, predicted by the law of equipartition of energy. It appears, therefore, that the very small
but non-zero value of constant ‘4’ is a measure of the failure of classical mechanics.

Only For Information : If quantum effects are to be observed, the frequency should be

hf
high enough so that ky T becomes comparable to unity. For example, at room temperature

hf
(T = 300 K), kB_T = % for f = 10' Hz. This shows that only when oscillator of at least

this frequency or higher, quantum statistical effects become noticeable at room temperature.

7.3 Photoelectric Effect

7.3.1 Emission of Electrons : We know that metals have free electrons. However, these
free electrons normally cannot come out of the metal surface. The reason is that electrons at the
surface experience strong attractive inward force due to positive metallic ions; while virtually no
attractive force from the outside. In other words, very close to the surface, potential energy of
electrons increase with distance as compared to inside electrons. That is, a potential-barrier exists at
the surface. Thus, to bring an electron out, some minimum amount of energy must be supplied to
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it. This minimum energy required to get emission of an electron is known as work function (¢,)
of the metal.

The work function of a metal depends on type of the metal, nature of its surface and its
temperature.

To bring an electron out of the metal, required energy may be supplied by any of the following
ways.

Thermionic Emission : In this method, current is passed through a filament so that it gets
heated sufficiently (normally 2500—-3000 K). Hence, free electrons in it gain enough energy and get
emitted from the metal. Such kind of electron emission is observed in devices like diode, triode, T.V.
tube (cathode ray tube), etc.

Field Emission or Cold Emission : When a metal is subjected to strong electric field of the

\

order of 10° .-, electrons are pulled out of the metal surface.

Photo Electric Emission : When an electromagnetic radiation of enough high frequency
1s incident on a cleaned metallic surface, electrons can be liberated from the metal surface.
This phenomenon is known as the photoelectric effect and the electrons so emitted are known
as photo electrons. To have photo emission, the frequency of incident light should be more
than some minimum frequency. This minimum frequency is called the threshold frequency (f,).
It depends on the type of the metal. For most of the metals (e.g. Zn, Cd, Mg) threshold
frequency lies in the ultraviolet region of electromagnetic spectrum. But for alkali metal
(Li, Na, K, Rb) it lies in the visible region.

7.3.2 Hertz’s Experiment : The photoelectric effect was discovered accidentally in 1887 by
H. Hertz, during his study on the phenomenon of emission of electromagnetic waves by means of
spark discharge. In his experiment electromagnetic waves from the transmitter (antenna) induced a
potential difference across the spark-gap, as evidence from the jumping spark across it. Hertz noticed
that the sparks jumped more easily when the cathode was illuminated by ultraviolet light. This
observation suggested that light facilitated the escape of charges from the metallic cathode across
the spark-gap. Further, Hallwachs extended this experiment for zinc plate. He connected the
negatively charged zinc plate with an electroscope. When this plate was irradiated with ultraviolet
light, it was observed that negative charge on the plate decreased. Not only this, even when a
neutral plate is irradiated with ultraviolet light it becomes positively charged, while postively charged
plates became more positively charged. Hallwachs concluded that under the effect of ultraviolet light,
negatively charged electrons are emitted from the zinc plate. These electrons are known as
photoelectrons.

7.3.3 Lenard’s experiment : The details of

the photoelectric phenomenon were studied by P.

Incident ultraviolet light Lenard, one of Hertz’s students. The experimental
arrangement to study the photoelectric effect is

Quartz

window Evacuated . .
shown in the figure 7.2.
chamber

The ultraviolet light entering from quartz window

g B i is incident on the cleaned photosensitive surface S.
C is the collector, while S is the cathode. C can be
kept at different positive or negative voltages with

sV ® (A respect to S.
HA

The characteristies of photoelectric effect can be
Figure 7.2 Experimental Arrangement studied in reference to the frequency and the intensity
to Study Photoelectric Effect of incident light, and also in terms of number of

photoelectrons emitted and their maximum kinetic energy.
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When the collector is positive with respect to S, the photo electrons are attracted to it and
micro-ammeter registers a current. The amount of current passing through the ammeter gives an idea
of the number of photoelectrons. At some value of positive potential difference, when all the emitted
electrons are collected, increasing the potential difference further has no effect on the current.

When the collector is made negative with respect to S, the emitted electrons are repelled and
only those electrons which have sufficient kinetic energy to overcome the repulsion may reach to the
collector, and constitute current. So the current in ammeter falls. On making collector more negative,
number of photoelectrons reaching the collector further decreases. For some specific negative
potential of the collector, even the most energetic electrons are unable to reach collector, and
photoelectric current becomes zero. It remains zero even if the potential is made further negative
than the specific value of negative potential. This minimum specific negative potential of the collector
with respect to the emitter (photo sensitive surface) at which photoelectric current becomes zero is
known as the stopping potential (V) for the given surface. It is thus the measure of maximum

kinetic energy (%mvzmw) of the emitted photoelectrons. If charge and mass of an electron are e

and m respectively,

lmv
2

Lenard performed further experiments by varying the intensity (brightness) of the incident light,

= eV (7.3.1)

2
max 0

and measured maximum K.E. and number of photoelectrons via the photoelectric current. He found
that by increasing the intensity of the incident light, photoelectric current (i.e. the number of
photoelectrons) increases but do not affect the K.E. of the emitted electrons. In the contrast, when
he performed the experiment with different frequencies, higher than the threshold frequency of the
incident light, changes the stopping potential (V) and thereby the K.E. of the emitted electrons,
leaving photoelectric current unaltered. It was found that by increasing frequency V and therefore
maximum K.E. of the photoelectrons increase, and vice versa. It was also observed that the photo-
electrons are emitted within 107 s after the light is incident.

In summary,

(1) The maximum K.E. of photoelectrons depend on the frequency of incident light, and does
not depend on the intensity.

(2) The number of photoelectrons depend directly on the intensity of incident light.

(3) Photoelectric effect is always observed whenever incident light has frequency either equal to or
greater than the thereshold frequency for the given surface irrespetive of the intensity.

(4) The phenomenon of photoelectric effect is spontaneous (takes about 107 sec.).

Above inferences can be depicted in the graphs below : (Figure 7.3 and 7.4)

Photocurrent [

LY (K] §
>

\} V.V ) vV — f—s

rl
o —+

Figure 7.4 Variation of Stopping Potential with

Figure 7.3 Variation of Photoelectirc Current Frequency of Incident Light
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7.3.4 Explanation from the wave theory of light : Above experimental results cannot be
understood with the wave theory of light.

(1) According to the wave theory of light, energy and intensity of wave depend on its amplitude.
Hence intense radiation has high energy and on increasing intensity, energy of photoelectrons should
also increase. In contradiction to it, experimental results show that the energy of photoelectrons does
not depend on the intensity of incident light.

According to the wave theory, energy of light has no relation to its frequency. Hence change
in energy of photoelectrons with the change in frequency cannot be explained.

(2) Photoelectrons are emitted immediately (within the 10 s) on making light incident on the
metal surface. Since the free electrons within the metal are withheld under the effect of certain
forces, and to bring them out, energy must be supplied.

Now, if the incident energy is showing a wave nature, free electrons in metal get energy
gradually and when accumulates energy at least equal to the work function then after they escape
from the metal. Thus, electrons get emitted only sometime after the light is incident.

(3) According to the wave theory, less intense light is ‘weak’ in terms of energy. To liberate
photoelectron with such light one has to wait long till electron gathers sufficient energy. Against that
experiment shows immediate emission of electron even with diminutive intensity but of course, with
sufficiently high frequency.

Thus, wave theory fails to explain the photoelectric effect.

7.3.5 Einstein’s Explanation : Einstein gave a successful explanation of the photoelectric
effect in 1905 for which he received the Nobel Prize in 1921.

Planck had assumed that emission of radiant energy takes place in the quantized form, the
photon, but once emitted it propagates in the form of wave. Einstein further assumed that not only
the emission, even the absorption of light takes place in the form of photons.

For Information Only : In the wave nature, the energy is supposed to be spread uniformly
across the wave fronts, Einstein proposed that the light energy is not spread over wavefronts but
is concentrated in small packets, the photons. He wrote : “According to the assumption considered
here, when a light ray starting from a point is propagated, the energy is not continuously distributed
over an ever increasing volume, but it consists of a finite number of energy quanta, localized in
space, which move without being divided and which can be absorbed or emitted only as a whole.”

Suppose frequency of incident light is f, hence energy of its photon is Af. When this photon is
incident on the metal, during the interaction with an electron, it is totally absorbed if its frequency
(and therefore energy) is greater than threshold frequency or otherwise does not lose energy at all.

As per the laws of classical mechanics (Newtonian mechanics and Maxwell’s theory for
electromagnetic waves) there is no reason to expect any sensitive frequency dependence of photon-
electron interaction. (You will learn its detailed answer in advance course in physics, if you choose
physics to shape your career.)

Now if fo is the threshold frequency the appropriate photon energy hf0 will be equal to work
function ¢, and at that frequency the photoelectrons are emitted with the minimum (zero) kinetic
energy. For frequency f > f,, the maximum kinetic energy of emitted photoelectrons
will be,

1
Emvzmax = hf — ¢,

From equations (7.3.1), eV, = hf — hf,
h
LV, = oo (é) (1.3.2)
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According to this equation the graph of V  versus f is a straight line with a slope % and

intercept on the X-axis at f. This is in excellent agreement with the experimental results shown in
the Figure 7.4.

The intensity of light incident on surface is the light energy incident per unit surface area in unit
time normal to the surface. According to photon theory (particle nature) of light, if n photons are
incident per unit surface area in unit time, intensity of light is I = nhf, where hf is the energy of
the photon of frequency f. Thus, according to photon theory, more the intensity of light more is the
number of photons incident per second and hence more is the photoelectric current. Again showing
an experimental trend.

Also, since the interaction between photon and electron takes place as the absorption as a whole
or not at all, emission of photoelectron will be instant. Unlike wave nature, where electron has to
wait till it gathers enough energy for escape.

Thus, experimental observations for photoelectric effect are reproduced by considering a particle
(quantized) nature (photon) of light.

Following table shows work functions and corresponding threshold freqeuncy for some metals.

Table 7.1

Workfunctions and Threshold Frequencies (For information only)

Metal | ¢, (n eV) | f (x 10™ Hz) | Metal o, (n eV) | f, (x 10" Hz)
Cs 1.9 4.60 Fe 4.5 10.89
K 2.2 5.32 Ag 4.7 1137
Ca 3.2 7.74 Au 4.9 11.86
cd 4.1 9.92 Ni 5.0 12.10
Al 42 10.16 Pt 6.4 15.49

Illustration 1 : Let an electron requires 5 X 107" joule energy to just escape from the
irradiated metal. If photoelectron is emitted after 10~ s of the incident light, calculate the rate
of absorption of energy. If this process is considered classically, the light energy is assumed to
be continuously distributed over the wave front. Now, the electron can only absorb the light
incident within a small area, say 107! m2 Find the intensity of illumination in order to see the
photoelectric effect.

Solution : The rate of absorption of energy (power) is

-19
p=L 30 _ 5500

J
t 10 $

From the definition of the intensity of light,

[ = Energy 5x107"°

J
= > —5 (i illion Watt
time x area o0 = 5% 107 3 (ie, 500 billion =E%)

m

Since, practically it is impossibly high energy, which suggests that explanation of the photoelectric
effect in classical term is not possible.
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Illustration 2 : Work function of metal is 2 eV. Light of intensity 10° W m™ is incident on

2 cm? area of it. If 10'7 electrons of these metals absorb the light, in how much time does the
photo electric effect start ? Consider the waveform of incident light.

Solution : Intensity of incident light is 107> W m™,

. Energy incident on 1 m? area in 1 s is 107 J.

. Energy incident on area of 2 cm?= 2 X 107 m?

=2x10"x10°=2x 1071
This energy is absorbed by 10 electrons.

2x107°7 %
. Average energy absorbed by each electron = o7 T 2 X 1007 ]

Now, electron may get emitted when it absorbs energy equal to the work function of its metal.
In the given problem work function is 2 eV = 2 X 1.6 X 107! J. Thus, electron requires

(2 X 1.6) X 107" J of energy to get emitted.

To absorb 2 X 1072° J of energy, time required is 1 s, therefore to absorb energy
2 X 1.6 X 107" J, time required is,

2x1.6x107"°
te=%=l.6xm7s

Note : If light is considered as wave, photo electron would not be emitted instantaneously as
generally seen in the experiments.

7.4 Particle Nature of Light

The photons are considered as discrete amounts of energy (packets) with smallest being the Af.
Thus, by nature itself the concept of photon involves the essence of radiation. So, can we consider
photon as a real particle ? The compton effect, in which X-rays are scattered by the free electrons,
gives the answer. To explain compton effect, photon was considered as a real particle just like a
material particle. The way electron collides with any other matter particles, electron may also
undergo same type of collision with photon. Also, this collision was considered to follow the laws of
conservation of momentum and energy. Thus, as a result of the study of photoelectric effect and
compton effect, following properties were attributed to a photon.

(1) Like a material particle, photon is also a real particle.

(2) Energy of a photon of frequency f is Af.

(3) Momentum of photon of frequency f is %

According to Einstein’s special theory of relativity the relation between energy (E) and
momentum (p) of a particle is given by,

2 .4

E = %+ my-¢*, where ¢ = speed of light in vacuum and (7.4.1)

mo = rest mass.

Mass of a particle moving with speed v as obtained from equation (7.4.1) is given by,

m= —— (7.4.2)

- —



Since, in vacuum, photon moves with speed equals to speed of light, its rest mass

From equation (7.4.1),
E = pc (7.4.3)

op=E =N (7.4.4)

C

(4) Mass of a photon, m = C% (v E = mc?); where m is given by (7.4.2).

(5) Like a real particle, photon interacts with other particles obeying the laws of conservation
of energy and momentum.

For Information Only : To say that electromagnetic radiations propagate as “waves” on one
side, at the same time say that in their interaction with matter they exchange energy and
momentum as discrete particles (photons) appears contradictory. Let us understand the situation in
more details.

Because these cannot be understood in terms of our classical ideas regarding ‘“waves”
and “particles”. These can be understood only if we accept that :

(1) Light is emitted from a source as described as photons.
(2) Detector records light as discrete photon.

(3) Propagation of light from the source to the detector can be described in terms of
“probability waves”.

(4) When a “photon” detector is placed in the radiation field of electromagnetic waves,
the number of photons detected over the area of the detector is proportional to the square
of the amplitude of electromagnetic waves, but the detector interacts with the field as
discrete photons.

Ilustration 3 : If the efficiency of an electric bulb of 1 watt is 10%, what is the number of
photons emitted by it in one second ? The wavelength of light emitted by it is 500 nm.

h =6625x 107 J s
Solution : As the bulb is of 1 W, if its efficiency is 100 %, it may emit 1 J radiant energy

in 1 s. But here the efficiency is 10%, hence it emits % J = 107" J radiant energy in 1 s.

Note : The efficiency of bulb is 10 %. It means it emits 10% of energy consumed in form
of light and remaining 90 % is wasted in form of heat energy (due to the resistance of
filament.)

. Radiant energy obtained from the bulb in 1 s. = 107! J

If it consists of n photons,

nhf = 1071 J
10! 0.1 x107" .
. n = = = — . - L
hf 6.625 % 10 4% £ 6.625 X 10*x3 x 108 o f=%)

2
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0.1x500x 10~

n= -+ velocity of light, ¢ = 3 X 10® m s~/
6.625x10 4 x3x 108 ( y oL e )
. n = 253 x 10" photons.

Illustration 4 : 11 x 10! photons are incident on a surface in 10 s. These photons correspond

to a wavelength of 10A. If the surface area of the given surface is 0.01 m?, find the intensity of
given radiations. Velocity of light is 3 X 10®* m s\, h = 6.625 X 107* J.s.
Solution : Number of photons incident in 10 s = 11 x 10"
. Number of photons incident in 1 s = 11 x 10'
Now, these photons being incident on area 0.01 m?

Number of photons being incident on 1 m? in 1 s,

11x10"°0 11x10'"°

0.01 1072

Energy associated with n photons,

n= =11 x 102

10 -34 8
= nhf = nhe _ 11X10 "X6.6x10 ~"x3x10° _ 218 % 1073

A 10x107"°
. Intensity of incident radiation = 2.18 X 10> W m™
Illustration 5 : A beam of photons of intensity 2.5 W m™ each of energy 10.6 eV is incident

on 1.0 X 107* m? area of the surface having work function 5.2 eV. If 0.5 % of incident photons
emits photo-electrons, find the number of photons emitted in 1 s. Find minimum and maximum energy
of these photo electrons.

lev=16x10"7J
Solution : Here, intensity of incident radiation is 2.5 W m™
. Energy incident per 1 m? in 1 s = 25 ]
. Radiant energy incident on area 1.0 X 10™* m? in 1 s =25 X 1.0 X 10* =25 X 10™* ]
Suppose there are n number of photons in this energy.
. nhf = 25 x 107 (1)
but hf = energy of photon = 10.6 eV = 10.6 X 1.6 x 1077 J

(v 1ev=16x10"7J
Replacing it in equation (1) and making 7n the subject of equation,

_ 25x10 _ _ 2.5x107*
hf 10.6x1.6x10™"°
As 0.50 % of these photons emits photo electrons,
[100 : 0.5}
n:?

. Number of photo electrons emitted in 1 sec is,

_0.50xn 0.5%2.5x10~
100 100x10.6x1.6x10

=737 x 10" ¢!

The minimum energy of photo electon is = 0 J. Such photo electrons spend all the energy gained
from the photon against the work function.

= [N —
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Maximum energy of photo electorn :

E = hf - ¢0 = 106 ¢V — 5.2 eV ("= hf = 10.6 eV and (1)0 =52 ¢eV)
=54 eV

Ilustration 6 : Radius of a beam of radiation of wavelength 5000 A is 10 m. Power of the

beam is 10~ W. This beam is normally incident on a metal of work function 1.9 eV. What will be

the charge emitted by the metal per unit area in unit time ? Assume that each incident photon emits
one electron.

h = 6625 X 107 J s
Solution : Power of the beam of light = 10° W
. Amount of energy incident in unit time = 107 J

If the number of photons corresponding to this energy is n,

_ o hE 103 _ 107°x4
nhf = nhs =107 = n = P

_ _107x5000x10""°
6.625x107*x3x10°

(" A =5000 A = 5000 x 107 m)
These photons are incident on the surface of radius 10~ m in one second.

. Number of photons incident per unit area in one second,

P 107> x5000x10~"
L 6.625%10* x3x108 xx (107%)?

Each photon emits one electron and charge on electron being ¢ = 1.6 X 107" C

. amount of charge emitted per unit area in unit time.

102 x5000x10~" x 1.6 x107"°
6.6x107* x3x10°x3.14x107°

Q = ne = = 1286 C

Ilustration 7 : Work function of some metals are Na : 1.92 eV, K : 2.2 eV, Cd : 4.1 eV,

Ni : 5 eV. A laser beam from He-Cd of wavelength 3300 A is incident on it. From which
of the metals photo electrons will be emitted, if the distance of the source is initially 1 m from
the metals. If it is brought to the distance of 10 cm will there be any change in emission ?

h=6625X10*7s.¢c=3x10ms! 1ev=16x10"1.

Solution : For photo-electric effect to be observed, energy of each photon should be at least
equal to or more than work function of the metal.

. hf = h% 2 work-function, ¢ ,

6.625x10 2 x3x10° = 6.625x107* x3x10°
3300x107"° 3300x107'%x1.6x107"°

Energy of Incident radiation =

(o1 eV =16x10"1I
Energy of Incident radiation = 3.76 eV
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This result shows that the metal which has the work function 3.76 eV or less, may produce
photoelectric effect. In the given list of metals Na and K may produce photoelectric effect, while
in Cd or Ni this effect is not observed.

While the source is brought nearer, from 1 m to 10 cm, the intensity of incident light will of
course increase, but its frequency will remain same. Hence, Na and K will emit more number of
photo electrons and photo electric cuurent will increase, but still photo electric effect will not be seen
in Cd and Ni.

Illustration 8 : U. V. light of wavelength 200 nm is incident on polished surface of Fe. Work
function of the surface is 4.5 eV. Find, (1) stopping potential (2) maximum kinetic energy of photo-
electrons (3) maximum speed of photo electrons.

h=6625%X10*7Ts ¢=300x10ms!, 1 ev=16x10"7J.

m = 9.11 x 10 kg
Solution : eV. = 1 m? = W — ¢, = he o
’ 0o 2 max o A 0

First we find %, to calculate VO.

34 8
he - SO2PAD XD~ 994 x 107° J = 621 &V
200x10
Now, eV, = % — ¢ = 621 — 45 (v ¢ = 45 ¢V) = 171 eV
LV, = 171V
Now,
sm? - =eV =171 eV = (171) (1.6 x 1077) J = 274 x 107" J

2.74x107"" %2
2 _ L PV A& _ 11
.V max [ 9.11)(10731 ] = 6.0 X 10

775 X 10° m s7!

max

o Pphoto-electrons

Ilustration 9 : A crystal of Cu emits 8.3 X 10! . Atomic mass of Cu is

64 g mol™' and its density is 8900 kg m™. Supposing that photo electrons are emitted from first five
layers of atoms of Cu, will one electron be emitted per how many (average) atoms ? Consider the
crystal to be a simple cubic lattice.

Solution : As the number of photo electrons are given as photo electrons/m’s, consider the cube
of crystal of length 1 m. Volume of such a crystal = 1 X 1 X 1 = 1 m’. Now density is 8900
kg m™. Hence, the mass of such crystal is 8900 kg. As the atomic mass is 64 g mol™', number

of atoms in 64 X 107 kg of Cu will be same as Avogadro number.
64 x 107 kg : 6.02 x 10%

. 8900 kg : number of atoms (?)

= [N —



6.02 x10% x 8900
64x107

. Number of atoms in 8900 kg of Cu, N = @))]

These atoms form simple cubic lattice.

If in one row there are n number of atoms, in one layer there may be n*> number of atoms.
In 5 layers number of atoms = 5n’

Note that total number of atoms in the given cube is n’
. N =n?

... From equation (1),

oo 6.02x10* x 8900
64x107°

1

23 3

o [6.02><10 >_<38900] ~ 437 x 10°
6410

. 5n? =5 X (437 X 10%% = 9.55 x 10"
. 8.3 X 10" photo electrons are emitted from 9.55 X 10 atoms.

If 8.3 X 10' photo electrons are emitted from 5n® atoms, from how many atoms one electron
is emitted ?

8.3 x 10'° : 512

1 : ? (number of atoms)
sn>  9.55x10"
8.3x10" 8.3x10"°

. Number of atoms emitting one photo-electrons = 1.15 X 10°

Ilustration 10 : Light of 4560 A of 1 mW is incident on photo-sensitive surface of Cs
(Cesium). If the quantum efficiency of the surface is 0.5 %, what is the amount of photo-electric
current produced ?

Solution : Meaning of light of 1 mW is that 1 mJ = 107 J of energy is being incident on the
surface in 1 s. This light is being incident in the form of photons of energy Ahf. If n photons are
incident.

nhf = 1073 (1)
Out of n photons only 0.5% photons emit photo-electrons, as the quantum efficiency is 0.5%.

Now, 0.5% of n, is

[100 : 0.5}
n :?

. Number of photo-electrons = nx0.5

100

Photo electric current is produced by these electrons is being emitted in 1 s.
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Photoelectric current, I = Number of photo—electrons emitted in 1 s X charge of electron

nx0.5
100

But from equation (1),

1= x 1.6 X 107 A (2)

10~ 107~ c
n = = ('.' = —)
M 6625x107 x4 I=7
-3 —-10

6.625x10*x3x10%

Replacing the value of n in equation (2),

[ = 2303x10°x0.5x1.6x10~"
100

“1=184 X 10° A = 1.84 HUA

Illustration 11(a) : As shwon in the figure, light of energy P(joule) is incident on a small, flat
strip of metal of mass m, suspended with the help of weightless string of length [ in 1 s. All the
energy incident on it is absorbed and the strip remains in equilibrium at an angle 0 with respect to
vertical. If the light is monochromatic, find angle ©.

Solution : When electromagnetic radiations are incident on a surface, force is produced due to
pressure. Here, P joule of energy is incident in 1 s. If this radiation is made of photons and n

photons are incident in 1 s,

nhf = P (1)
hf
Now, momentum of each photon, p = = (2)

Replacing the value of Af from (1) in (2),

_ P
P = nc
. P
. momentum of n photons = np = +
nj o The strip gains this much momentum every
second.
. Rate of change of momentum = % = Force

. F = 3)

ol

This force is shown in the Figure.
As the strip is in equilibrium, equating their vertical and horizontal components,

T cosd
and T sin®

mg P P
P } S tan® = Gpg = 0 = tan™ (W)

c

< [0 —



Ilustration 11(b) : If the strip is slightly displaced from its state of equilibrium, find the period
of it’s simple harmonic oscillations.

N
Solution : Here, effective gravitational acceleration = g_; = % + ?
2
2 = JIR) +g?
T |ge| (mc) &
L
_ L 2,
Now, T = 21 [z, = (1) tg
mc
_ l 2
T = 21

7.5 Photocell

A Photocell (which is also known as electric eye) is a technological application of the
photoelectric effect. In some photocells single layer of photosensitive material is used. A schematic
diagram of a typical photocell is shown in the figure 7.5.

The wall of the photocell is made of glass or
quartz. When the light (of suitable frequency) is
incident on the photosensitive surface, a
photocurrent of few micro ampere is normally
obtained. When intensity of incident light is
changed the photo electric current also changes.
Using this property of photocell, control systems
are operated and the intensity of light can be
measured.

Incident Light

y
C = Collector

S = Photo-sensitive layer

They are used in light meters, photographic

camera, electric bell, burglar alarm, fire alarm. In

astronomy, they are used to study the spectra of
. A
stars and their temperatures. H

Figure 7.5 A Photocell
7.6 Matter Waves - Wave Nature of Particles

The photoelectric and compton effect have confirmed that light behaves as a collection of
particles and not as a wave. At the same time, we also know that the phenomena of diffraction,
interference and polarization can be understood only when light behaves as wave. This is a paradox
of the existence of two quite different (the wave and the particle) nature of the same physical
quantity (light). One possibility is to suppose that light propagates in the form of wave but assumes
particle character at the instant of absorption or emission (i.e. during the interaction with matter).
This explanation suggests that radiation shows dual nature; (continuous) wave-like extended and
(discrete) quantized particle behaviour under the suitable conditions.

According to the theory of relativity, Lorentz transformation for a change of reference frame
requires that relation like between E and f must necessarily hold for momentum (p) and wave-vector
(k). Since for photon rest mass (my) is zero, its momentum is given by (see equation 7.4.4),
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or A= & (7.6.2)

Based on this requirement, in 1924, Louis de Broglie arugued that if light (which consists of
waves according to classical mechanics) can sometimes behave like particles. Then it should be
possible for matter (which consists of particles according to classical picture) to exhibit wave-like
behaviour under favourable circumstances. ‘“Nature should be symmetric with respect to
radiation and particles.” The dual nature of radiation and particle must be a part of some general
law of nature. That is, radiation and matter both show dual nature : particle and wave.

Thus, according to de Broglie, equation (7.6.2) is also true for material particles. For a particle
with mass m and moving with a speed v (i.e., momentum, p = mv), when showing wave nature,
corresponding wavelength can be found by using equation (7.6.2), as

A= (7.6.3)

This wavelength is known as de Broglie wavelength of the particle. We must remember that it
is not that any kind of wave is attached to the matter particle. Under some circumstances, the
behaviour of the particle can be explained by its wave nature.

Actually, the concept of matter particle as a wave was well supported by Erwin Schroedinger
(1926) through his differential wave equation. He showed that this wave equation (for matter waves
associated to particles) together with some physically-required conditions leads to quantized (discrete)
nature of various physical quantities which supports the wave nature of particles. While the
experimental evidences for matter as a wave were due to Davisson-Germer experiment, (which we
will study in the next section), Kikuchi’s diffraction experiment and Thomson’s experiment showing
associated de Broglie waves of electrons.

However, the most serious problem raised by the discovery of the wave nature of matter
concerns the very basic definition of a ‘particle’. Classically, particle means a point-like object
endowed with a precise position and momentum. The de Broglie’s hypothesis, which also supports
wave-like (i.e. an extended in space) behaviour of matter, questions about how to measure accurately
position and momentum of a material particle.

A pure harmonic wave extending in space obviously cannot represent point-like particle. This
suggests that the wave activity of a wave representing a particle must be limited to (or nearby to)
the space occupied by the particle. For this reason an idea of wave packet (i.e. a wave which is
confined to a small region of space) is introduced.

SN N AN ST T T A TS

aaat”

(b) Amplitude Variation Due to
Superposition of Harmonic Waves.

(a) Harmonic Waves with Slightly Differing Wave Lengths.

Figure 7.6 Construction of Wave Packat
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We know that when many harmonic waves with slightly varying wave lengths are superposed
(Hey, don’t forget superposition principle), non-zero displacement of resulting wave is limited to small
part of the space (See figure 7.6). In this sense, it would seem reasonable to suppose that the
particle is within the region of the packet. Further, the probability of finding the particle is more in
a region in which the displacement of the resulting wave is greater. If we use a single harmonic
wave to represent a particle, the probability of finding a particle anywhere from —oo to +oo s
equal. (This is because amplitude of a harmonic wave is finite and equal everywhere.) In other
words, the position of the particle becomes totally uncertain. But, since the harmonic wave has
unique wave length (A), according to equation (7.6.3), its momentum is unique and certain.

If the concept of wave-packet (a group of superimposing waves of different wave lengths) is
used to represent particle, position of the particle is more certain and is proportional to the size of
the wave-packet. But as several waves of different wave lengths are used to represent a particle,
its momentum is no longer unique and becomes uncertain.

Thus, the fundamental dual nature of radiation and particle introduces uncertainty in the
simultaneous measurement of physical quantities.

Heisenberg’s Uncertainty Principle : According to Heisenberg’s uncertainty principle, if the
uncertainty in the x-coordinate of the position of a particle is Ax and uncertainty in the
x-component of its momentum is Ap (i.e. in one dimension) then

Ax-Ap 2 % > h (Read as h cut or h cross). (7.6.4)

Now, if Ax — 0 then Ap — oo
and Ap — 0 then Ax — oo

Similarly, one finds uncertainty principle associated in measuring energy of a particle and
time as,

AE-At =2 h (7.6.5)

Only for Information : We discussed about the probability of the particle to be at a definite
point. In fact the wave functions representing a particle can be mathematically obtained in the
form of solutions of typical differential equations (Schroedinger’s equation). These wave functions
may be real or complex according to the situation. According to Max Born, the probability of
finding a particle at any point in the space in one dimension is proportional to the square of the

magnitude of such a wave function (JW|]> = y*y). Hence, we have to deal with such probabilities
while discussing about microscopic particles. This branch of physics is called wave mechanics.

You might have noted that the approach of physics based on quantum mechanics is not
deterministic like classical physics.

So, for a microscopic particle like an electron, it is meaningless to question whether it is a
particle or a wave. Actually it is neither a wave nor a particle. It is more fundamental physical
reality whose behaviour can be understood with particle mechanics in some situation and with
wave mechanics in the other. The mathematical studies developed in reference to the wave and
particle nature are merely two disciplines to understand the nature.

Noted writer Margenau compares the question : “wave or particle ?” with the question “what
is the colour of an egg of an elephant ?” This question is meaningful only if an egg of an elephant
exists !
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Illustration 12 : Find the certainty with which one can locate the position of (1) a bullet of
mass 25 g and (2) an electron, both moving with a speed 500 m/s, accurate to 0.01 %. Also, draw

inferences based on your results. Mass of an electron is 9.1 X 107! kg.

Solution : (1) Uncertainty in measurement of momentum of a bullet is 0.01% of its exact value.
ie., Ap = 0.01% of mv.

= (%9) x @5 x 107) x (500)

=125 x 1073 kg m s™!
Therefore, corresponding uncertainty in the determination of position is

Ax = % (using equation 7.5.4)

6.625x10* B i
= 2x3.1ax2s)xio” <10 (v ho= ak)

= 844 x 107 m.
Conclusion : The value of Ax is too small compared to the dimension of the bullet, and can
be neglected. That is, position of the bullet is determined accurately.
(2) Uncertainty in measurement of momentum of an electron is

L Ap = (%) x (9.1 x 1071 x (500) = 4.55 x 102 kgms™

Corresponding uncertainty in position is

_ 6.625x107*
© 2x3.14x4.55%10
Conclusion : Uncertainty in position for an electron (2.3 mm) is too large compared to the
dimension of an electron, when it is assumed to be as a particle. Consequently, the concept of an
electron as a tiny particle does not hold.
7.7 Davisson-Germer Experiment

—5 = 023 X 102 m = 2.3 mm

Till 1927, De Broglie’s hypothesis did not get any

Accelerating

voltage, , = experimental confirmation. In 1927, two scientists named
| 4 Davisson and Germer performed series of experiments

Vacuum at Bell laboratory to study scattering of electron by a
(Detector) . . .
piece of Nickle placed in vacuum.

The device used by them is shown in figure 7.7.

Here, G is the electron gun having tungsten filament

Galvanometer

coated with barium oxide. Filament is heated with L. T.

- (Low Tension = low p.d.). Hence, it emits electrons.
(Crystal of Nickel)

Now, these electrons can be accelerated under
E appropriate electric field produced by H. T. (High

Figure 7.7 Arrangement for Tension). These electrons pass through a cylinder having
Davisson-Germer a small hole and form a thin beam of electrons which
Experiment is incident on a piece of Nickel and get scattered

by it (in fact by its atoms). To detect the electrons
scattered in different directions a detector D is arranged which can be moved on a circular scale
as shown in figure 7.7. The output current from this detector passes through a galvanometer. The
amount of current represents the number of electrons scattered in that direction.

0 [ —



According to classical physics, number of electrons scattered in different directions does not
depend much on the angle of scattering. Also, this number hardly depends on the energy of incident
electrons. Davisson and Germer tested these predictions of classical physics using the piece of Nickel
as the scatterer.

During one of their experiments the bottle filled with liquefied air burst and the surface of
the piece of Nickel was damaged. They heated the piece of Nickel to a high temperature and
then cooled it to level its surface. Again when the experiment was repeated they found
“something unusual”. They found that the results of diffraction of electrons by Nickel are
similar to the diffraction of X-rays by a crystal. This can happen only if electrons act as
waves. This happened because when the piece of Nickel was heated and then cooled it was
converted into a single crystal.

In this experiment the intensity of electron beam scattered at different angles of scattering,
can be measured for the given accelerating voltage. Angle of scattering (0) is the angle
between the incident beam and scattered beam of electrons. The graphs of intensity — 0 for
the observations taken by Davisson and Germer between 44 V to 68 V are shown qualitatively
in figure 7.8.

44V 48V 20 54V 64V 68V

(a) (b) (0 d) (e)

Figure 7.8 Results for Davisson Germer Experiment

The graphs indicate that the number of electrons scattered at a specific angle of scattering is
maximum for the given accelerating voltage. See the graph of 54 V carefully. Here, the number of
electrons scattered at an angle of 50° is found to be maximum. These experimental results can be
understood if the electrons are considered as the waves having de Broglie wavelength and if we
accept that electrons are scattered just as X-rays by a crystal. The interatomic distance of Nickel
is known. With this information and using the equation of scattering wavelength of electron can be
obtained experimentally.

If the accelerating voltage is V and charge of an electron is e, energy of electron is

m? = eV

[T

soomh? = 2meV

- MV = 2meV
But wavelength, A = miv
h
. 7\‘ = M (7.7.1)

In above equation substituting V = 54 V, h = 6.625 x 10>* Js, m = 9.1 x 107! kg and
e =16 x 10 C, we get L = 1.66 X 107" m. The value of A obtained in the experiment

was 1.65 X 1071 m. Thus, accidentally it was proved that an electron behaves as wave also.
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For Information Only : The development of quantum physics is very interesting. This is the
magnificent knowledge of mankind struggling to know the nature. Not only that but it is the
confluence of rivers like science, mathematics and philosophy. Diving in it we realize how
magnificent is the nature !

Illustration 13 : Suppose you are late in reaching the school, and you are going at the speed
of 30 m s'. If your mass is 60 kg. assuming that you are a particle find your de Broglie
wavelength 1 = 6.625 x 107 J S.

Solution : p = mv = 60 X 3.0 = 1.8 X 10> kg m s

h 6.625x107*

Now, A = 5 Lax10r = 3.68 X 107 m

Note : This wavelength is even smaller than the radius of the nucleus (~ 107'° m) by
107! times. If you want to make your wave properties “regular”’, your mass should be reduced to

unimaginable level.
Ilustration 14 : A proton falls freely under gravity of Earth. What will be its de Broglie
wavelength after 10 s of its motion ? Neglect the forces other than gravitational force.

g=10m s, m, = 1.67 X 107% kg, h = 6.625 X 1073 J s
Solution : From v = v, + &,
v = gt

. momentum, p = mpv = mpgt

_ 6.625x10>%
1.67x1072"x 10x10

. A =396 x 10° m = 396 A
Illustration 15 : An electron is at a distance of 10 m from a charge of 10 C. Its total energy
is 15.6 x 107! J. Find its de Broglie wavelength at this point.
h =6625x 107 Js; m = 9.1 x 107" kg; k =9 x 10° SIL,
e =16 x 10" C

Solution : Potential energy of an electron, U = —kw
LU = — 9x10°x10x1.6x10™"
) 10
. U=-144 x 10710 J (1)
Now total energy E = Kinetic energy K + Potential energy U
. K=E-U

=156 X 1070 + 144 x 10710

« [ —



K =30x 10107

2

But, K

2m,
. p = 2Kme
h 6.625x10~>*
7\’ = = =
VK, 30%10 0% 9. 110
©“ A =897 X 105 m

Illustration 16 : Compare energy of a photon of X-rays having 1 lgx wavelength with
the energy of an electron having same de Broglie wavelength. & = 6.625 x 107 J s;
c=3x10m s m =91 x 107" kg

Solution : For photon,

Energy, E = hf = % A=1A=10"m

-34

g = 6625x10

8
x3x10. = 19.87 x 1070 J
P 10

-10

For an electron;

p?
Energy, E, = o

According to de Broglie relation, p = %

2 —34.2
= - OO0 ) 41 x 1077 g
¢ A°(2m) (1077)"%x2x9.1x10

E,  1987x107'°

E, = 241x107V
E

p —

. = 824

Thus, energy of photon is 82.4 times the energy of electron having same wavelength.

Ilustration 17 : Wavelength of an electron having energy E is 7\.0 = ﬁ , where m is the

mass of an electron. Find the wavelength of the electron when it enters in X-direction in the region

having potential V(x). If we imagine that due to the potential, electron enters from one medium to
another, what is the refractive index of the medium ?

Solution : Energy of electron in the region having potential

E = (Kinetic energy)K + (Potential energy)U

- p: _
s E = om eV(x)
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1
. p= [2m(E+eV(x)]?

‘. 7\’ = % = —h l
[2m(E + eV (x)]?
1
A [2m(E + eV (x)]? h
Now, refractive index = =2 = 1 (- 7»0 = =)

1
. Refractive index = [EJF%V(X):IZ

Illustration 18 : Consider the radius of a nucleus to be 107 m. If an electron is assumed to
be in such nucleus, what will be its Energy ?

Mass of electron = 9.1 X 107! kg; h = 6.625 X 107* J s

Solution :
position.

“Ax=2r=2x10"m

Now, according to Heisenberg’s principle

As the electron acts as a wave in this situation, the maximum uncertainty in its

r = radius of the nucleus = 107° m

h
.'.Ax-Asz

h_ _ 6.625x10*
2mAx 2x3.14x2x1071

. Ap = = 0.5274 x 107"

Now, if this uncertainty is (approximately) taken as the momentum (p = Ap), energy of electron

- P
E 2m
0.5274x10"%)? 0.5274x1071%)?
- 0270 Sy O30 )y - 955 x 10° MeV
2x9.1x10 2x9.1x10 7" x1.6x10

Now, the binding energy of a nucleus is several MeV. As compared to it the energy of an
electron in the nucleus is very large. Hence, electron can not reside in a nucleus.
Illustration 19 : Find the wave packet formed due to the superposition of two harmonic waves
represented by y, = A sin(®r — kx) and y, = A sin[(® + doy — (k + dk)x]
Solution : According to the principle of superposition,
y =yt
= A sin(of — kx) + A sin[(® + doyt — (k + dk)x]

Using the relation sin A + sin B = 2 sin (ﬂ) cos (A—;B)

2

y = 2A cos (xdk;tdw) _ Sin[(wt_kx)_'_(tdw;xdk)]

As amplitude of the wave packet = 2A cos (M) , it depends both on the position and time.

[ —



10.
11.

SUMMARY

Difficulties by the classical theoretical explanation of certain experimental observations like,
energy distribution in black-body radiation, stability of an electrically neutral atom and its
spectra, specific heats of solids and diatomic molecules at low temperatures, etc., have forced
scientists to think totally differently.

Planck with his revolutionary idea that energy of microscopic oscillating dipoles is quantized to
hf. And total energy is always an integral multiple of the smallest quantum of energy (Af), the
photon. Here, & is known as the Planck’s constant. The photon possesses all the properties
of a material particle.

Planck’s hypothesis could solve black-body radiation problem successfully.

To bring an electron out of the metal, some minimum amount of energy must be supplied to
an electron, which is known as work function of the metal. The work function depends on the
type of metal, nature of its surface and its temperature.

Corresponding to work function minimum frequency required to eject photoelectron is known
as the threshold frequency.

Dependence of photoelectric current on the intensity of incident light, value of maximum kinetic
energy of an emitted photoelectron on frequency of incident light and not on its intensity,
instantaneous (within 10~ sec) emission of photoelectrons cannot be explained by the wave
nature of light.

Assuming light as a particle, Einstein could solve the mystery of the photoelectric effect. His

photoelectric equation %mv2 = eV, = hf — ¢, is in accordance with the energy

max 0

conservation law.

Photoelectric effect and Compton effect have confirmed the dual nature of radiation.

On the symmetry argument, de Broglie had further proposed dual nature for material particles.
Which was supported by experimental observations (e.g., Davisson-Germer experiment) as well
as by theoretical calculations (e.g., Schroedinger wave equation).

This confirms the dual (particle and wave) nature for both radiation and matter particles.
The non-zero value of Planck’s constant (#) alongwith Heisenberg’s uncertainty principle
measures the inadequacy of the classical mechanics.

EXERCISES

For the following statements choose the correct option from the given options

1.

Cathode rays ..........

(A) are the atoms moving towards the cathod.

(B) are electromagnetic waves.

(C) are negative ions travelling from cathode to anode.

(D) are electrons emitted by cathode and travelling towards anode.

Which of the following statement is not true for a photon ?

(A) Photon produces pressure (B) Photon has energy Af.
hf

(C) Photon has momentum —- (D) Rest mass of photon is zero

The velocity of photon emitted in photo-electric effect depends on the properties of photosensitive
surface and..........

(A) frequency of incident light (B) state of polarization of incident light

(C) time for which the light is incident (D) intensity of incident light

Photoelectric effect represents that

(A) electron has a wave nature (B) light has a particle nature

(C) (1) and (2) both (D) none of the above
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10.

11.

12.

14.

15.

16.

I is same as the

De Broglie wavelength of a particle moving with velocity 2.25 X 10® m s~
wavelength of photon. The ratio of kinetic energy of the particle to the energy of photon
1Seveienae

Velocity of light = 3 X 108 m s~
1 3 5 7
A) 3 B) 3 © 3 O 3

Energy of photon is E = Af and its momentum is p = % where A is the wavelength of
photon. With this assumption speed of light wave is ..........

E EY
A £ ®) ) Ep (D) (;)

Wavelength A , and 7”3 are incident on two identical metal plates and photo electrons are
emitted. If A N 27LB, the maximum kinetic energy of photo electrons is ..........

K K

A) 2K, =K, (B K, <=2 (©OK, =2 (DK, >-E

Cathode rays travelling in the direction from east to west enter in an electric field directed
from north to south. They will deflect in ..........

(A) east (B) west (C) south (D) north

If photoelectric effect is not seen with the ultraviolet radiations in a given metal, photo
electrons may be emitted with the ..........

(A) infrared waves (B) radio waves (C) X-rays (D) visible light

Photons of energy 1 eV and 2.5 eV successively illuminate a metal whose work function is
0.5 eV, The ratio of maximum speed of emitted electron is ..........

A)1:2 B)2:1 © 3:1 D) 1:3

When frequencies f1 and f2 are incident on two identical photo sensitive surfaces, maximum

velocities of photo electrons of mass m are v, and v,, hence ...

B

L
W ovi-vi=2 ¢ ®) v, +v, = | B )
L
© v +vi=2 ¢ 45 ©) v, = v, = [Zfapy]

A proton and an O-particle are passed through same potential difference. If their initial velocity
is zero, the ratio of their de Broglie’s wavelength after getting accelerated is.\

(A) 1 :1 B)1:2 © 2:1 D) 242 : 1
Mass of photon in motion is ..........

c hf
(A) 77 ®) 4 (©) hf ® =
Wavelength of an electron having energy 10 keV is .......... A,
(A) 0.12 B) 1.2 ©) 12 (D) 120

If the momentum of an electron is required to be same as that of wave of 5200 A
wavelength, its velocity should be .......... m s

(A) 10° (B) 1.2 x 10° (C) 14 x 10° (D) 2.8 x 10°

The uncertainty in position of a particle is same as it’s de Broglie wavelength, uncertainty in
its momentum is ..........

A 4 ®) 2% © 4 D) =

s [ —



17.

18.

19.

20.

21.

22.

23.

24.

25.

A proton and electron are lying in a box having unpenetrable walls, the ratio of uncertainty
in their velocities are ......... [me = mass of electron and m = mass of proton.]

p
(M) e B) m, - m, (©) yfm,m, (D) \/;

When o-particles are accelerated under the p.d. of V volt, their de Broglie’s wavelength is

.......... A [Mass of o.-particle is 6.4 X 10727 kg and its charge is 3.2 X 107 C.]

0.287 12.27 0.103 1.22
() 2L ® i © "N ® Ty

De Broglie wavelength of a proton and O-particle is same, .......... physical quantity should be
same for both.

(A) velocity (B) energy (C) frequency (D) momentum

To reduce de Broglie wavelength of an electron from 107'° m to 0.5 x 1070 m, its energy
should be ..........

(A) increased to 4 times (B) doubled

(C) halved (D) decreased to fourth part

The de-Broglie wavelength of a proton and O—particle is same. The ratio of their velocities
will be ... .

[0—particle is the He-nucleus, having two protons and two neutrons. Thus, its mass

m, = 4mp; where m, is the mass of the proton.]

(A 1:4 B)1:2 < 2:1 D) 4 :1

The de-Broglie wavelength associated with a particle with rest mass m, and moving with
speed of light in vacuum is .......... .

A L B) 0 C D Mo

[e ] —_—
A) myc (B) ©) D) —
An image of sun is formed by convex lens of focal length 40 cm on the metal surface of
a photoelectric cell, and a photoelectric current | is produced. If now another lens with half
the focal length but with same diameter is used to focus the sun image, on the photoelectric

cell, photoelectric current becomes .......... .

A ®) 21 © 1 D) 3

In quantum mechanics, a particle .......... .

(A) can be regarded as a group of harmonic waves.

(B) can be regarded as a single wave of definite wave-length only

(C) can be regarded as only a pair of two harmonic waves

(D) is a point-like object with mass.

Which of the following physical quantity has the dimension of planck constant (k) ?

(A) Force (B) Angular momentum
(C) Energy (D) Power
ANSWERS

1. D) 2. (A) 3. (A) 4. (B) 5. (B) 6. (B)

7. B) 8 (D) 9. (C) 10. (A) 1. (A) 12. (D)
13. (D) 14. (A) 15. (C) 16. (A) 17. (A) 18. (C)
19. (D) 20. (A) 21. (D) 22. (B) 23. (C) 24. (A)
25. (B)
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Answer the following questions in brief :

1.

L e S
AL e

.
&

19.

© ® N A U R W W

What is photon ?

What is ultraviolet catastrophe ?

Write Planck’s hypothesis to explain energy distribution for cavity radiation.

Write Planck’s revolutionary idea to explain energy distribution for cavity radiation.
Define work function of metal.

On which factors work function of metal depends ?

What is thermionic emission ?

Define field emission.

Give definition of photoelectric emission.

What is threshold frequency ? On which factor does threshold frequency depend ?
What is stopping potential ?

Which physical quantity can be infered from the knowledge of shopping potential ?
On what factor does the stopping potential depend ?

Write de Broglie hypothesis.

Define wave packet.

State Heisenberg’s Uncertainty principle.

Write the conclusion of Davisson-Germer’s experiment.
(&)
If the threshold wave length of Na element is 6800 A, find its work function in eV.

(9
Calculate the energy of photon in eV for a radiation of wavelength 5000 A ?

Answer the following questions

1.

2
3
4
S.
6
7
8

Write the characteristics of photoelectric emission.

How wave theory fails to explain the experimental results of photoelectric effect ?

Explain Finstein’s explanation for photoelectric effect.

Write the properties of a photon.

Write a short note on photo cell.

Explain the experimental arrangement of Davisson-Germer experiment.

Explain the conclusions of Davisson-Germer experiment.

Calculate the maximum kinetic energy (eV) of a photo electron for a radiation of wave length

o
4000 A incident on a surface of metal having work function 2 eV ?

o
A light beam of 6000 A wavelength and 39.6 w/m? intensity is incident on a metal surface.

If 1 % photon of the incident photon comitts the photo electron, calculate the number of photo

electron emitted per second ?

s [ —



Solve the following examples

1.

A small piece of Cs (work function = 1.9 eV) is placed 22 cm away from a large metal plate.
The surface charge density on the metal plate is 1.21 X 10~ C m™. Now, light of 460 nm
wavelength is incident on the piece of Cs. Find the maximum and minimum energies of photo

electrons on reaching the plate. Assume that no change occurs in electric field produced by

the plate due to the piece of Cs.
[Ans. : Minimum energy = 29.83 ¢V, Miximum energy = 30.63 ¢eV)

Threshold wavelength of tungsten is 2.73 X 107 cm. Ultraviolet light of wavelength
1.80 x 107 cm is incident on it. Find, (1) threshold frequency, (2) work function

(3) maximum kinetic energy (in joule and eV) (4) stopping potential and (5) maximum and

minimum velocity of an electron.
[Ans. : (1) f; = 1.098 X 10" Hz = 1.1 x 10" Hz, (2) ¢ =454 eV, 3) K =376 X
10" 7 =235¢eV, 4 V, =235V, 5) v, =909 x 10°m s’ =91 X 10° m s,

=0ms)

Wavelength of light incident on a photo-sensitive surface is reduced from 3500 A to 290 nm.
Find the change in stopping potential & = 6.625 X 107* J s. [Ans. : 73.42 X 1072 V]

An electric bulb of 100 W converts 3% of electrical energy into light energy. If the
wavelength of light emitted is 6625 g, find the number of photons emitted is 1 s.
h = 6625 x 10 J s. [Ans. : 10"

When a radiation of wavelength 3000 A is incident on a metal, stopping potential is found to

be 1.85 V and on making radiation of 4000 A incident on it the stopping potential is found to
be 0.82 V. Find (1) Planck’s constant (2) Work function of the metal (3) Threshold wavelength
of the metal.. [Ans. : (1) h = 659 X 107 J s (2) ¢0 = 2268 eV (3) 7»0 = 5440 z&.]

Work function of Zn is 3.74 eV. If the sphere of Zn is illuminated by the X-rays of
wavelength 12 ,&, find the maximum potential produced on the sphere.
h =625 % 107 Js. [Ans. : 1032.2 V]
Find the energy of photon in each of the following :
(1) Microwaves of wavelength 1.5 cm (2) Red light of wavelength 660 nm
(3) Radiowaves of frequency 96 MHz (4) X-rays of wavelength 0.17 nm

[Ans. : (1) 83 X 107 eV (2) 1.9 eV (3) 4 X 107 eV (4) 7.3 keV]

Human eye can experience minimum 19 photons per second. Light of 560 nm wavelength is

required for it. What is the minimum power necessary to excite optic nerves ?

[Ans. : 674 x 107 W]
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10.

11.

12.

13.

14.

Power produced by a star is 4 X 10 W. If the average wavelength of the emitted radiations

is considered to be 4500 10\ find the number of photons emitted in 1 s.

[Ans. : 9.054 X 10% photons/s]

What should be the ratio of de Broglie wavelenghts of an atom of nitrogen gas at 300 K and
1000 K. Mass of nitrogen atom is 4.7 X 1072° kg and it is at 1 atm pressure. Consider it as
an ideal gas. [Ans. : 1.826]

Monochromatic light of wavelength 3000 A is incident normally on a surface of area 4 cm?.

W
If the intensity of light is 150 ’:1_2 find the number of photons being incident on this surface

in one second. [Ans. : 9.05 x 10" s71]

A star which can be seen with naked eye from Earth has intensity 1.6 X 10° W m™ on
Earth. If the corresponding wavelength is 560 nm, and the diameter of the lens of human eye

is 2.5 X 10 m, find the number of photons entering in our eye in 1 s.
[Ans. : 9 X 10* photons/s]

Find the velocity at which mass of a proton becomes 1.1 times its rest mass,
m, = 1.6 X 107" kg. Also, calculate corresponding temperature. For simplicity, consider a
proton as non-interacting ideal-gas particle at 1 atm pressure.

[c =3 x 10° ms™, k, = 1.38 x 107 SI| [Ans. : v = 042 C, 6.75 x 10" K]

Output power of He-Ne LASER of low energy is 1.00 mW. Wavelength of the light is
632.8 nm. What will be the number of photons emitted per second from this LASER ?

h =625 %x 1073 J s. [Ans. : 3.18 x 107 s71]

0 [N —



SOLUTIONS
| CHAPTER 1]

1. Suppose charge on a sphere A and sphere B is g, and g, respectively. In first case force

99
between two spheres is F = k;_22- When sphere A is brought in contact with sphere C

and charge on sphere B will be g, = 92.

the charge on sphere A will be, g, = 9;
2 2

Now, force between sphere A and sphere B at distance % will be

k
P o= M kg, F 0
7S S

2. Suppose the density of sphere = p and density of kerosene

= p'. When two spheres are suspended in air forces acting Tcos

on it are shown in figure. In equilibrium pasition,

F, = Tsin® and mg = TcosO. From these, F,

Isinf

F
tan® = =% (1)

m g
Now, the sphere is immersed in kerosene, due to buoyant

force acting on it, its weghit will be (m — m')g instead of

F
mg and electric force. F, = 7‘
Because dilectric constant of kerosene is, K = 2.
F /
e
ootan® = /2 (2)

Comparing equation (1) and (2), m = 2m'

or pV = 2(p'V)

p=2p =2 x800 = 1600 kg m™> 9
3. Suppose g, = 0.5 X 1076C

g, = —0.25 x 10°C, ¢, = 0.1 x 107°C

From the figure,

Position vector of ¢, is = (0, O)m
q,
.. .o -2 i »
Position vector of g, is r, = (5 X 1077, 0O)m .-’\"::-iﬂlf Y5
. . - -2 )
Position vector of ¢, is r, = (2.5 X 1077, 2.5 X 10 X4/3 )m
- o -
Now, force on q,, § = E, + E,
- - - -
_ f]](r3—”|)+f]2(r3—”2)
- q3 - o 3 - o 3
lry—n | lr—r, |

5
Substituting values in above equation and calculate E, .
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As shown in figure, the net force on charge 2q is F = 1_3;

- = - =g = .
+ F; + F. and |F, | = |Fy| = | K. | because of equilateral
triangle. All three forces are at 120° respectively. Vector

., . = = = . .
addition of F,, F; and F. using triangular method forms

close loop. So, the resultant force is zero.
5. Torque on dipole, T = PEsin® = PEO (" 0 is small)

Torque is in clockwise direction, therefore T = —PEO

Now, T = Iot and o0 = —®*8

_ |PE . »_ 1 |[PE
O =T S f= AT

6. Suppose an electron is thrown from the distance r from surface with 150 eV energy.
Work done on electron against the force,

W= F.7 = (=B = [%}(r)
0
Now substitue the values in this equation and find the value of r.

7. Suppose charge on two spheres is ¢, and g, respectively.
In the first case According to Coulomb’s Law.

0.108 = 9 x 10°—%2
(0.5)
. 4,9, =3 % 10° (1)
Now, when both the spheres are bring in contact, the charge on both spheres will be is

2
of 41— 4,
9I%10 (—2 }

94— 49 : =
-5 In this case, force between them, 0.036 (0.5)2
. g, —gq,=2x10° (2)
Equating equation (1) and (2)
g, =3 x10°C and ¢, = 1 x 10°C
E
8. Acceleration of 2¢g charge, a, = a - 248
m m
. . 2qE
Velocity of charge after 7 time, v, = at = =t
.. 1 2 24°E*
So, Kinetic energy K, = Fmv,© = 4=y (1)
m
Similarly, calculating kinetic energy of charge g will be
202
= ¢E p
K2 4m ! (2)
From, equation (1) and (2)
5o
K, 71

9. Two forces are acting on a simple pendulum (1) Electric force qE (2) Gravitational force mg .

- - -
Resultant force, F = mg + gE
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10.

11.
12.

13.

LLLLL LA

o I F | = img)? +(qE)? +2(mg)(gE)cos(180° —0)

Taking effective acceleration g, of sphere, 7

—

mg, = J(mg)2 + (qE)2 —2(mg)(gE)cos0 a

i

1
2.2 >
2,4E —Zg—chosej2

L8, = |8 T3 1500
m

/
Periodic time of pendulum T = 27 7 - Substitute the value g
e

of g, in it.
Due to charge g on a sphere of radius 1 cm, +¢g charge is induced on outer region of

sphere having radius 7, = 5 cm and —¢ charge is induced in inner region. Now, draw the

3
spherical Gaussian surface of radius r, = 2 cm. Applying Gauss’s Law,

- >
E.dz = g—q
0
S

q

E@nr,?) = —
énr)) = 3
. q
. — 3
4713801'2

Calculate the value of E by substituting the values
in above equation.

Solved according to illustration 15.

When charge ¢ is established on a particle and if electric force gE acting vertically
downward on it and gravitational force mg acting on it will be same then particle will be
in equalibrium.

gE = mg

mg _ _mg

._q:E_%

Calculate g by substituting the values in above equation.
Force between the electron and the proton is,

9 -19,2
_ 949, _ 9%x107(1.6x10 ") _ 3
F =k r2 = (0.53)(10_]0)2 = 8.2 X 10°°N

The force F on a revolving electron will be equal to centripetal force.

2
m_ = F

.
Now, putting v = r@,

mre* = F
-8
. Radial acceleration r@’ = % = % =9 X 10% m/s?
Ax
2
8.2x10
.o = m = 3.9 x 10'® rad/s.
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CHAPTER 2

1. Figure
@ mmmmmmmmm———————— -
(0.0) (100.0)
q,=2C q, = -3 C
: _ 24 Kg, . _ K¢ _Kg
) V=7 + Go-r =0 (i) V.= 7" + [0+x) ~ 0
Hence find x,. Hence find x,.

(Take g, = 2 C and g, = =3 O)
2. When both the spheres are joined by a conducting wire; the charges distribute in such a
way that their potentials become equal.

K K
3“ = Sb. But Q, = Q — Q,. Hence find Q,. Similarly find Q,.
-V —oV oV

For point (1, 1, 1) put x = 1, y = 1, z = 1 to find E,, E, E_ Hence find E.

Kq
4.

4. Find r from V =

If the radius of big drop is r', iTCr'3 = (8)(%751’3) s =2r

3
. LI Kq' "
Now, find V' = — where, g = 8q.
5. When Q = 0, the potential = 0, When Q = Q, the potential = V = KTQ
. Average potential = O;V = %
Now, find potential energy = (average potential) (charge)
6. Electric charge in small surface element = Ods'. Potential due to it at 0
" 1 ods'
dv' = 4ne, R

. Total potential V = '[dV = 4738 % _[ds'
0

f ds' = 2mR?% Hence find V.

on semi-
sphere

. __1 Q
7. Potential on the sphere V = Imey R
1 o(4mR®)
T 4mg, R
_ OoR
= &
Hence find VA, VB, VC and V = VA + VB + VC
¢ Gy
8. C_2 = C_4 .. Potential difference for C5 =0

.. It is not in action (not effective)
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10.

11.

12.

13.

_i . 1
—3.f1ndC.

1
3

L
C"

—_

_ 8 "
+8_12 find C .

=

Find C = C' + C"".

Initially the charge on capacitor = Q.

2
Find initial energy U = %CVZ. It can also be written as = (ZQ_C

When it is joined with other uncharged capacitor, the charge on each one will be
PN 0}
=Q'= 3.

Now find energy of each one U' = S_C

'

Find total energy = U' + U' = 2U

If capacitance on path MNOP is C',
Lo L Ly Lo o= W
c T 10 B
C' and C, are in parallel. .. Their equivalent capacitance C''= % + 10 = 5 pF.

Find charge coming from battery Q'' = C'"'V
Find Q, = C,V. Find equal charge on

C1’ C2, C3 as = Q' -— Q4.

1

If capacitance on the path B C2 C3 D, is C', T = CL + CL Find C'. Now between
2 3

A and C, C, C' and C, are in parallel. .. C"" = C, + C'+ C,.

The equivalent connections are as shown here. R 43 4
[ 11
7 Tl
. . . . v 1 @
C,, and C,, are in series. Their equivalent C' = 7| 7d L
b
With this combination C,, is in parallel. +-
At
find C,;, = C' + C,,. I
C,, and C,; are in parallel
] 8OA 2_-_'-_ _-_-_2
*. Their equivalent C' = 2| =7~ 1= 53
C' and C,, are in series. J_
S
1 _ 1 1 . 4=
Use Cop — C + C., to find C,,. B—!_
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CHAPER 3
1. If the number of electrons striking the screen per second = n

Q ne

Using the equation of current, I = - = 7 calculate n.
Electric charge striking the screen in f = 1 minute = 60 s can be calculated from
Q =1z

2. The speed of electron in a circular orbit v = % = 21rf

Substituting given values of v and r, calculate f.
Now, apply the equation I = ef.
3. (1) Calculate the potential difference across the ends of a wire from equation,

V=IR:I(pﬁ)

(i) From equation I = Av Je. drift velocity v 1= Ane

dN_A
M
4. Area of cross-section of a semiconductor

A = bh

A= (4 X 10925 x 10°) = 10°m?

where, number density of electron n =

Find the current density from J = %

Now, using equations J = ne v and v, = % calculate time .

d
5. New length of a wire [' =1 + 10 % of [
I'=1+011=111

1.1
.. o
Initially, R = p-

After stretching the wire, R' = p%
volume of the wire is constant.

.A1=A'l':>%=l - 1.1

R _I' A _ 1)2_
Now, R = l'A'_(l = 1.21

Percentage increase in resistance = % X 100 = (1.21 — 1) X 100 = 21%

6. Let the length of P part of wire = [,
and Q part of wire = (I — )
If the resistances of P, Q and R part of wires be R,, PQ and R, respectively then,

R :p%,RR—LZ”4p—l:4R

P - A A P
iz
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_ p(-=0)
and RQ = =%

given that, R, = R

Q
pL_ p=D)
YA T Ta

_1
= [ = s m
7. Given that, RAI = RCU

l l

pl._] = pz._Z
A Ay
p A

= 0 = A
P1 1

Now, mass of Al wire m,, = A/l d, and mass of C, wire m, = Ald,
Their ratio gives, m, = 2.15 m,,
om,, < mg
8. (i) Applying Kirchhoff’s second rule to the closed loop BADB, —3I + 51 + 1 = 0(1)
E(2V} r=20
(i) For a closed loop DCBD, =21 — 1, + 1 =0 (2) 'i i .

il-1)

B
(I=Iyh
Solving equation (1) and (2) we get, I, = %A FlIV)

- - (L A
and V, = IR = (13) @ = 3ZV

[
G(3V) r =35

9. (1) Applying Kirchhoff’s second rule to the closed loop ACDBMNA, r2x + y) = ¢ (1)

(i) Similarly for a closed loop ACEFDBMNA, 2r(3x — 2y) = € 2)
E T
From equation (1) and (2), y = 3x 3) .
Li=¥) 1
. _ (14 ¢'§ nt D L¥-p)
From equation (1) and (3), € = 5 ) 4) ( s &
If the effective resistance between A and B is r' then, ' UYL F=——2H
, X X
€ = 2xr 5) 3, 3
comparing equation (4) and (5) » c
- 1 ll
d 57 N ;: M

10. Let the required equivalent resistance be X. The network is infinite. Therefore adding one
more stage to the network does not affect the value of X.
The equivalent resistance of the above circuit
should be equal to X.

XR
X+R

X2 —2RX — 2R? =0
Solving the above equation by the method of
quadratic equation, we get,

X = R(I + 43)

+ 2R =X

Solution




11.

12.

13.

14.

Length of the potentiometer wire L, = 200 cm
= null point length [, = 80 cm
IR
.e=01[ = [L—Jll (1

1

Length of potentiometer wire L, = 300 cm
= null point length [, = ?

IR
€ =ol = [L—zjlz (2)
Comparing equation (1) and (2),
[, = 120 cm

(1) Applying Kirchhoff’s second rule to the closed circuit shown in Figure,
=2l -2l = -18 + 12 = I = 1.5A
Ii""”:\'r'i _’_'_35{ (2) Calculate electrical power in Battery using
4' F——WW———— equation P = €l
(3) Terminal voltage of a 18 V battery
| W V=¢-Ir=V=15V
Terminal voltage of a 12 V battery
V=¢g+1Ir =V =15V (. The battery of
It T 12 V is being charged.)
b eeatl I (4) Calculate power consumed in battery from

equation I%r.
V and H is same for both the coils

2 2 2
. IR V™ |R¢ V7t
For coil-1, H = —1J1t1 = [ 2] L=
1

—

R | T J
1 JH
= 5 = T3 1
R, Vztl (D
. 1 JH

For coil-2, R_z = V2t2 (2
when two coils are connected in parallel,
1 _ JH
R ~ V% 3)

where R = equivalent resistance of a parallel connection
From equations (1), (2) and (3)

JH JH JH

vi T Vi + Vi,

1 1
% = E + g = t = 3.43 minute
Heat required to melt the fusewire
H = mcA6
= (Ald) cA® (1)
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where, d = density of fusewire
¢ = specific heat of fusewire
m = Ald = mass of fusewire
AO = Increase in temperature required to melt the fusewire
Heat produced in the fusewire by passing current I through it for time ¢,
H = IR 2)
J
For melting of a fusewire,

2
1—}“ = AldcA®

B (pE) L = Aldeno
. Ppt = JA%dcA®

2

.= JA gche (3)
I'p

From this equation both the fuse wire will melt in the same time for the same value of current

flowing through them.

(o J, A, d, C, AB, p are constant for both the fusewires)
2
15. Using P = X, R, = 3025 Q and R, = 121 Q
Similarly from equation P = VI,
I, = 03636 A and I, = 0.9091 A
Same current will flow through each of the bulb when two bulbs are connected in series with
a supply of 220 V.

N 220
- 1= R 4R, = 3005+121- 019 A

Here T > 1 K therefore A bulb will fuse.

CHAPTER 4
1 I
1. % = % (in opposite directions)
Hence find x. ﬂ:r_--u1----)|<------u|_1.u """ i |
€ 0.2 m #
2. At P, B = H (in opposite directions)
ol
2my H
P H
Hence find I B :
At Q, B = H (in the same direction) e
. Total magnetic field = B + H = 2B = 2H. B ?
- 3 '
3. S =13 [ = 100 unit and I; = 2 unit, find S.
G



10.

11.

2
Find velocity v from gV = %Mv2 ...... V = voltage. Put it in My. — Bgv and then

R

Make R the subject, to get R = [M]z x i V, g, B are same for both particles.

B
2
M (R
M, R,

- N - - - .

T = u X B =NIA X B gives T = NIAB,

2
Length of wire L = N (2nrR) = R = L. A= nR? = nﬁ, Put A in T,
T

27N’ ax’

2 2
my” _ : _mv _ P A2mE _ 1 _2_ p . _
T—qugwesr—Bq—Bq— BY ..E—2mv—%..p— 2mE
L4 Dg 9p
rp - Bqd X pp 9 eee (qP - qd)’
D J2m E )
-4 — N_d_ (But m; = 2m_; E is same)

r

d _

)

P

_ : _ o _ BN
kG = NABI; Take ¢ = 36><180 rad, k = o Find &.

¥ _I‘LOIx _HOI}’
I B—WandBy—za.

By

. . . [ 2 2
5 79---}&‘—;-:& Resultant magnetic field is B' = ,’Bx +B.

L1 I =5A
E = E 12 1 E -
T = 21y Find T u gl
I ;
B = ;Toy' The velocity of electron is perpendicular to this B. ' i

Use F = Bgvsin®@ = Bev

10 '
Use formula obtained in illustration-1 B = ;ﬁ—R; 0 in radian = 2m — % = 37",
I = 6A and R = 0.02. Find B.
[ ]
CHAPTER 5
. _ r1+r2 _ i

Average radius r = 5 n = Sy

B
Now H = nlf Hence use W, = Hn_H

0 [ —



2. m =15 %x 102 A m?

atom

~om,, = m, X number of atoms per unit volume

mnet
Hence use M, = — (1)
Thermal energy of the atom of gas = %kT 2)
Maximum potential energy of atom = m , B 3)

3
. . _kT .
Find the ratio |2 B and give answer.
mnet

.- ‘:\-\r

3.  For magnet (1) the equatorial magnetic field at A (1 m from 2)
. . — uo m N F
its centre) is B1 = In ?,

‘ - \,\'.r- S '}"/—’.

&
1
i
L]
i
[
i
i

L.

i
L]
i
For magnet (2) the axial magnetic field at A (I m from its %
centre) is --‘r!*n..‘ r=2m
B, = Lo 2m - # E ‘T
2 dr 3 ' i :
o A0 __ g
Hence resultant magnetic field at A is Er,n__ . .
i
¥

B = ,/BIZ + B22

4. Axial magnetic field of magnet is

_ Bo2m _ Mo 2Py
BQ@) = 77 S A

[ = length of magnet, p, = pole strength

Hence calculate force on magnetic pole as F = p, B(z)
5. Work done for rotating magnet of magnetic dipole moment m by angle 0 is

¢ 0
W(0) = [mBsinddd = [-mBeosd]
0

W(90°)
W(60°)

Now W(90°) = nW(60°) = n =

6. Magnetic moment of magnet is shown by PM making angle of
45° in PQTV plane. The plane PQTV makes an angle of 30°
with magnetic meridian plane represented by PQRS.

For rectangular triangle PAC, PA = B cos30°.

Hence in plane PQTYV, for rectangular triangle

AM

o
PAm tand5° = PA

Now calculate Bv in terms of BH.

By
In plane PQRS, fan¢ = §
H

Solution




7. Use m = lew; and L = myr

2
8. (a) Use B(x) = Ho 2—’;’ to calculate m.
4
(b) Using the value of m from (a), calculate B(y) = Z—g %
¥

9. Volume of cylindrical rod V = mrl

Then use, m ., = M X V
net

10. Number of electrons (n,) = number of ions (7,)
Average kinetic energy of electron = K,
Average kinetic energy of ion = K,
Total kinetic energy of the gas is K = (n, X K) + (1, X K)
When the gas is completely magnetized, the resultant magnetic moment of gas is equal to its

magnetization M or M |
max

When U = M.B = K, (M = nom + nm = 2n,m)
. K = MBcos6, Calculate M when 6 = 0°
11.  Length of solenoid = /, Number of turns per unit length = n
Hence, magnetic moment of solenoid m = NIA = nlIA

Also pole strength of solenoid pg = %
[ ]
CHAPTER 6

1. Using Gauss’ formula for mirror 2 =1 + L obtain Vv = u-R
: g R u v’ 2u—R

Differentiate it with respect to time, i.e. obtain % and simplify.

dv _ _ . .

Let i velocity of image

and du v = velocity of object
2 Usem= =2 =" 44 -1 + L with proper sign convention
: u h S u v prop g ’

[Ans. : 37.5 cm]
3. This is the combination of plano-convex lens formed by water and a concave mirror. Focal
length of a lens,

—

€ 1 1

Refraction 2

Air . For plano-convex lens, R, = oo, R, = —R (say), n is
Refraction 1 .. ! R
the refractive index of the material forming lens, here
water.
R
O (D)

If focal length of a mirror is f, then effective focal
=== length of this combination

11,11
TR A A
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where f, focal length corresponding to emerging ray, which is from denser (water) to rarer
(air). f2 is the focal length of the mirror.

Here, f, — —f, ande - f

1 _ 2 1
A h b2
_ 2 _ L (o f= 2 for mirror and using equation (1))
_ = (2) S f= R using equ
(n=1) R
v _R
AT

. effective radius of curvature,

1 1 R_
R' =2 = 35

Since n = 1.33 = IR'l > IRI

i.e. image will form between C' and pole.
5. Since Snell’s law is applicable to all points, first apply it to the point of incident.
ie, n sin® = const, A (say)

Let at a distance y in the medium, refracted ray is horizontal (i.e. 0, = 90°). Then again using
Snell’s law at this point,

n,sind, = A;

Where n, = (1.5 — 0.25y). This gives value of y. [Ans. : y = 3m]
6. For large incidence angle, lateral shift,
t-sin(6, —0,)
X = #, where 91 = 53°
2
Find 92 using Snell’s law. 7 is given. [Ans. : x = 9 mm]
1
7. Use 7= % + % to obtain m = uff

(1) When m = 4, obtain object distances u, = % f.
(2) Now, on displacing object by 3 cm away from the mirror,

u, = u, + 3 (in cm)

Now, calculate f. [Ans. : Ifl = 36 cm]
8. For optical fibre, requirement for total internal reflection is (90° — O f) > C

. sin(90° — Gf) > sinC

. cosef > % (. for air-medium interface sinC = %)

Now apply Snell’s law to find maximum incident angle. [Ans. :

[STE]
e

9. Apply Snell’s law at the point of incidence to the river. Then use simple trigonometry.
[Ans. : length of a shadow = 3.44 m]

Solution - 283



10.

11.

14.

sinC = % gives C. From the Figure, tanC = % find h.
[Ans. : 1.33 cm]

For image due to surface on right,
M n _ L
7+7—(n2—n1)>< R1 (1)
Where n, = 1, n, = 1.5, R, = —R, u = —-%

1 > Y > 2

_ 3R

cv= R @)

The image due to this surface is the object for the second. For surface on the left,

n =1, n, =[5 R, = +R|.

R) from the centre towards

W

From equation (2), image of right-surface is at a distance (R—
the right-surface. Therefore, u for left-surface is %R. Using equation (1), image distance due

to left-surface from the centre is %

*. distance between two images due to both surfaces is %R - %R = 0.114R

For plano-convex lens,

1 1 _ 1 1 _1
.R1=100m,f=200m,n:1.5

This lens would have given image at I'. But back plane reflecting surface gives image at 1''.

This 1'' image is the virtual object for the curved surface. Using

- n H=m S
7"1 + 72 = ( R J formula for incident

1
. oo -9 = =
rays : u — , v 2, n, 1.5, n, 1.

. v'=30 cm.
For emerging ray (second refraction),
n=15n=1,R=-10cm u =+ 30 cm, v = ?
v = 10 cm.

Since object was at infinite, final image distance (v) gives the focal length of the system.
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15. From the similarity of ABH1H2 and AFIOHZ,

OF _ OH
OA HH,

_-f] —h'

—u ~ (=h+h)

(sign convention)

Similarly, for AB'H1H2 and AF,OH,,

H - _h
v = (=h+h)

Adding these equations,

f, o =h+th
YT Ty =
_ v _ (V_fz)
o dml = i 7

From equation (1) for special case, f, = —f, = f

i+i=1

u v

_ 1

-1 + % =7 This is the Gauss’ formula.

‘u

| CHAPTER 7
(eE)(d)

1. Minimum Energy, W = Fd

Il

aQ
—
S |q
N

IS

Minimum Energy = %sz + W

(hf = ) + W

= g +w

30.63 eV

2. (1) Threshold Frequency, f; = 3~ = 1.098 X 10°Hz ~ 1.1 X 10" Hz
0

(2) Work Frunction ¢, = hf, = 4.54 eV

(3) max KE., %szmax = hf — If, = hc(%_%oj

235 eV

Solution

)]



(4) Stopping Potential V, = (%szm )
= 235 eV

5) xmv, 2 = eV,

. _|2eV, _

- Vo = T and V .= 0 m/s

h
eV, = 35 = 0,
he hc

eV, = A - ¢, (1) and A -0, @
‘. Subtract (1) from (2)
Change in stopping potential, Vo, — Vo, = %(

p= s x =100 =3
_E _ nnf _ pM

P=7T = 7 TNE 90
_ hc

eVO—T—q)O

hc

. eVol = }\‘_1 — (l)o (1) and eVOZ =

1 1
. e(Vo, — Vo) = hc(x—l—z

From equation (1)

hc
¢0= 7”_1 —Vole= .......... .

|

Now, subject the formula for A& and calculate if.

¢0=70:M=¢—0: .......... .

_ he
Ve = % — 4
. _hc_¢0_
.V——M o T e .

For (1) and (2)
Energy of photon E = ~
for (3) and (4) E = hf

Physics=TI1



_ E _ nhf _ nhe _
8. p= 7T = 7T T T e
9. p = % = # = % = no. of photon emitted per second is n = I;l—}: = v .
2= 3
10, smv” = szT
m*v? = 3k,Tm
. p = ."3kBTm
h
A = p
1M
Ao \/T = ;”2 = Tl = e
E _ nhf _ nhe
n. I= At At Atk
= n IATA .
hc
E _ nhf _ nke
2.1 At At Ak
IMAt
= he
My
13. m = > and m = 1.1 m and calculate V.
)4
-7
C
12 3 my”
5mv=§kBT:T=%= .......... .
14. p = % = # = nx—htc = no. of photons emitted per second is, n = I}%f = e .
[ ]
Solution - 287



10.

11.
12.
13.
14.
15.

16.
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